mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 18:51:14 +06:00
428 lines
16 KiB
Python
428 lines
16 KiB
Python
from tqdm import tqdm
|
|
import collections
|
|
import logging
|
|
import os
|
|
import json
|
|
import numpy as np
|
|
|
|
from ...tokenization_bert import BasicTokenizer, whitespace_tokenize
|
|
from .utils import DataProcessor, InputExample, InputFeatures
|
|
from ...file_utils import is_tf_available
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer,
|
|
orig_answer_text):
|
|
"""Returns tokenized answer spans that better match the annotated answer."""
|
|
tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))
|
|
|
|
for new_start in range(input_start, input_end + 1):
|
|
for new_end in range(input_end, new_start - 1, -1):
|
|
text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
|
|
if text_span == tok_answer_text:
|
|
return (new_start, new_end)
|
|
|
|
return (input_start, input_end)
|
|
|
|
def _check_is_max_context(doc_spans, cur_span_index, position):
|
|
"""Check if this is the 'max context' doc span for the token."""
|
|
best_score = None
|
|
best_span_index = None
|
|
for (span_index, doc_span) in enumerate(doc_spans):
|
|
end = doc_span.start + doc_span.length - 1
|
|
if position < doc_span.start:
|
|
continue
|
|
if position > end:
|
|
continue
|
|
num_left_context = position - doc_span.start
|
|
num_right_context = end - position
|
|
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
|
|
if best_score is None or score > best_score:
|
|
best_score = score
|
|
best_span_index = span_index
|
|
|
|
return cur_span_index == best_span_index
|
|
|
|
def _new_check_is_max_context(doc_spans, cur_span_index, position):
|
|
"""Check if this is the 'max context' doc span for the token."""
|
|
# if len(doc_spans) == 1:
|
|
# return True
|
|
best_score = None
|
|
best_span_index = None
|
|
for (span_index, doc_span) in enumerate(doc_spans):
|
|
end = doc_span["start"] + doc_span["length"] - 1
|
|
if position < doc_span["start"]:
|
|
continue
|
|
if position > end:
|
|
continue
|
|
num_left_context = position - doc_span["start"]
|
|
num_right_context = end - position
|
|
score = min(num_left_context, num_right_context) + 0.01 * doc_span["length"]
|
|
if best_score is None or score > best_score:
|
|
best_score = score
|
|
best_span_index = span_index
|
|
|
|
return cur_span_index == best_span_index
|
|
|
|
def _is_whitespace(c):
|
|
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
|
|
return True
|
|
return False
|
|
|
|
def squad_convert_examples_to_features(examples, tokenizer, max_seq_length,
|
|
doc_stride, max_query_length, is_training,
|
|
sequence_a_is_doc=False):
|
|
"""Loads a data file into a list of `InputBatch`s."""
|
|
|
|
# Defining helper methods
|
|
unique_id = 1000000000
|
|
|
|
features = []
|
|
for (example_index, example) in enumerate(tqdm(examples)):
|
|
if is_training and not example.is_impossible:
|
|
# Get start and end position
|
|
start_position = example.start_position
|
|
end_position = example.end_position
|
|
|
|
# If the answer cannot be found in the text, then skip this example.
|
|
actual_text = " ".join(example.doc_tokens[start_position:(end_position + 1)])
|
|
cleaned_answer_text = " ".join(whitespace_tokenize(example.answer_text))
|
|
if actual_text.find(cleaned_answer_text) == -1:
|
|
logger.warning("Could not find answer: '%s' vs. '%s'", actual_text, cleaned_answer_text)
|
|
continue
|
|
|
|
|
|
tok_to_orig_index = []
|
|
orig_to_tok_index = []
|
|
all_doc_tokens = []
|
|
for (i, token) in enumerate(example.doc_tokens):
|
|
orig_to_tok_index.append(len(all_doc_tokens))
|
|
sub_tokens = tokenizer.tokenize(token)
|
|
for sub_token in sub_tokens:
|
|
tok_to_orig_index.append(i)
|
|
all_doc_tokens.append(sub_token)
|
|
|
|
|
|
if is_training and not example.is_impossible:
|
|
tok_start_position = orig_to_tok_index[example.start_position]
|
|
if example.end_position < len(example.doc_tokens) - 1:
|
|
tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
|
|
else:
|
|
tok_end_position = len(all_doc_tokens) - 1
|
|
|
|
(tok_start_position, tok_end_position) = _improve_answer_span(
|
|
all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.answer_text
|
|
)
|
|
|
|
spans = []
|
|
|
|
truncated_query = tokenizer.encode(example.question_text, add_special_tokens=False, max_length=max_query_length)
|
|
sequence_added_tokens = tokenizer.max_len - tokenizer.max_len_single_sentence
|
|
sequence_pair_added_tokens = tokenizer.max_len - tokenizer.max_len_sentences_pair
|
|
|
|
span_doc_tokens = all_doc_tokens
|
|
while len(spans) * doc_stride < len(all_doc_tokens):
|
|
|
|
encoded_dict = tokenizer.encode_plus(
|
|
truncated_query if not sequence_a_is_doc else span_doc_tokens,
|
|
span_doc_tokens if not sequence_a_is_doc else truncated_query,
|
|
max_length=max_seq_length,
|
|
return_overflowing_tokens=True,
|
|
padding_strategy='right',
|
|
stride=max_seq_length - doc_stride - len(truncated_query) - sequence_pair_added_tokens,
|
|
truncation_strategy='only_second' if not sequence_a_is_doc else 'only_first'
|
|
)
|
|
|
|
paragraph_len = min(len(all_doc_tokens) - len(spans) * doc_stride, max_seq_length - len(truncated_query) - sequence_pair_added_tokens)
|
|
|
|
if tokenizer.pad_token_id in encoded_dict['input_ids']:
|
|
non_padded_ids = encoded_dict['input_ids'][:encoded_dict['input_ids'].index(tokenizer.pad_token_id)]
|
|
else:
|
|
non_padded_ids = encoded_dict['input_ids']
|
|
|
|
tokens = tokenizer.convert_ids_to_tokens(non_padded_ids)
|
|
|
|
token_to_orig_map = {}
|
|
for i in range(paragraph_len):
|
|
index = len(truncated_query) + sequence_added_tokens + i if not sequence_a_is_doc else i
|
|
token_to_orig_map[index] = tok_to_orig_index[len(spans) * doc_stride + i]
|
|
|
|
encoded_dict["paragraph_len"] = paragraph_len
|
|
encoded_dict["tokens"] = tokens
|
|
encoded_dict["token_to_orig_map"] = token_to_orig_map
|
|
encoded_dict["truncated_query_with_special_tokens_length"] = len(truncated_query) + sequence_added_tokens
|
|
encoded_dict["token_is_max_context"] = {}
|
|
encoded_dict["start"] = len(spans) * doc_stride
|
|
encoded_dict["length"] = paragraph_len
|
|
|
|
spans.append(encoded_dict)
|
|
|
|
if "overflowing_tokens" not in encoded_dict:
|
|
break
|
|
span_doc_tokens = encoded_dict["overflowing_tokens"]
|
|
|
|
for doc_span_index in range(len(spans)):
|
|
for j in range(spans[doc_span_index]["paragraph_len"]):
|
|
is_max_context = _new_check_is_max_context(spans, doc_span_index, doc_span_index * doc_stride + j)
|
|
index = j if sequence_a_is_doc else spans[doc_span_index]["truncated_query_with_special_tokens_length"] + j
|
|
spans[doc_span_index]["token_is_max_context"][index] = is_max_context
|
|
|
|
for span in spans:
|
|
# Identify the position of the CLS token
|
|
cls_index = span['input_ids'].index(tokenizer.cls_token_id)
|
|
|
|
# p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer)
|
|
# Original TF implem also keep the classification token (set to 0) (not sure why...)
|
|
p_mask = np.array(span['token_type_ids'])
|
|
|
|
p_mask = np.minimum(p_mask, 1)
|
|
|
|
if not sequence_a_is_doc:
|
|
# Limit positive values to one
|
|
p_mask = 1 - p_mask
|
|
|
|
p_mask[np.where(np.array(span["input_ids"]) == tokenizer.sep_token_id)[0]] = 1
|
|
|
|
# Set the CLS index to '0'
|
|
p_mask[cls_index] = 0
|
|
|
|
|
|
span_is_impossible = example.is_impossible
|
|
start_position = 0
|
|
end_position = 0
|
|
if is_training and not span_is_impossible:
|
|
# For training, if our document chunk does not contain an annotation
|
|
# we throw it out, since there is nothing to predict.
|
|
doc_start = span["start"]
|
|
doc_end = span["start"] + span["length"] - 1
|
|
out_of_span = False
|
|
|
|
if not (tok_start_position >= doc_start and tok_end_position <= doc_end):
|
|
out_of_span = True
|
|
|
|
if out_of_span:
|
|
start_position = cls_index
|
|
end_position = cls_index
|
|
span_is_impossible = True
|
|
else:
|
|
if sequence_a_is_doc:
|
|
doc_offset = 0
|
|
else:
|
|
doc_offset = len(truncated_query) + sequence_added_tokens
|
|
|
|
start_position = tok_start_position - doc_start + doc_offset
|
|
end_position = tok_end_position - doc_start + doc_offset
|
|
|
|
|
|
features.append(SquadFeatures(
|
|
span['input_ids'],
|
|
span['attention_mask'],
|
|
span['token_type_ids'],
|
|
cls_index,
|
|
p_mask.tolist(),
|
|
|
|
example_index=example_index,
|
|
unique_id=unique_id,
|
|
paragraph_len=span['paragraph_len'],
|
|
token_is_max_context=span["token_is_max_context"],
|
|
tokens=span["tokens"],
|
|
token_to_orig_map=span["token_to_orig_map"],
|
|
|
|
start_position=start_position,
|
|
end_position=end_position
|
|
))
|
|
|
|
unique_id += 1
|
|
|
|
return features
|
|
|
|
|
|
class SquadProcessor(DataProcessor):
|
|
"""Processor for the SQuAD data set."""
|
|
train_file = None
|
|
dev_file = None
|
|
|
|
def get_example_from_tensor_dict(self, tensor_dict):
|
|
return SquadExample(
|
|
tensor_dict['id'].numpy().decode("utf-8"),
|
|
tensor_dict['question'].numpy().decode('utf-8'),
|
|
tensor_dict['context'].numpy().decode('utf-8'),
|
|
tensor_dict['answers']['text'][0].numpy().decode('utf-8'),
|
|
tensor_dict['answers']['answer_start'][0].numpy(),
|
|
tensor_dict['title'].numpy().decode('utf-8')
|
|
)
|
|
|
|
def get_examples_from_dataset(self, dataset):
|
|
"""See base class."""
|
|
|
|
examples = []
|
|
for tensor_dict in tqdm(dataset):
|
|
examples.append(self.get_example_from_tensor_dict(tensor_dict))
|
|
|
|
return examples
|
|
|
|
def get_train_examples(self, data_dir, only_first=None):
|
|
"""See base class."""
|
|
if self.train_file is None:
|
|
raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor")
|
|
|
|
with open(os.path.join(data_dir, self.train_file), "r", encoding='utf-8') as reader:
|
|
input_data = json.load(reader)["data"]
|
|
return self._create_examples(input_data, "train", only_first)
|
|
|
|
def get_dev_examples(self, data_dir, only_first=None):
|
|
"""See base class."""
|
|
if self.dev_file is None:
|
|
raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor")
|
|
|
|
with open(os.path.join(data_dir, self.dev_file), "r", encoding='utf-8') as reader:
|
|
input_data = json.load(reader)["data"]
|
|
return self._create_examples(input_data, "dev", only_first)
|
|
|
|
def get_labels(self):
|
|
"""See base class."""
|
|
return ["0", "1"]
|
|
|
|
def _create_examples(self, input_data, set_type, only_first=None):
|
|
"""Creates examples for the training and dev sets."""
|
|
|
|
is_training = set_type == "train"
|
|
examples = []
|
|
for entry in tqdm(input_data):
|
|
title = entry['title']
|
|
for paragraph in entry["paragraphs"]:
|
|
context_text = paragraph["context"]
|
|
for qa in paragraph["qas"]:
|
|
qas_id = qa["id"]
|
|
question_text = qa["question"]
|
|
start_position_character = None
|
|
answer_text = None
|
|
|
|
if "is_impossible" in qa:
|
|
is_impossible = qa["is_impossible"]
|
|
else:
|
|
is_impossible = False
|
|
|
|
if not is_impossible and is_training:
|
|
if (len(qa["answers"]) != 1):
|
|
raise ValueError(
|
|
"For training, each question should have exactly 1 answer.")
|
|
answer = qa["answers"][0]
|
|
answer_text = answer['text']
|
|
start_position_character = answer['answer_start']
|
|
|
|
example = SquadExample(
|
|
qas_id=qas_id,
|
|
question_text=question_text,
|
|
context_text=context_text,
|
|
answer_text=answer_text,
|
|
start_position_character=start_position_character,
|
|
title=title,
|
|
is_impossible=is_impossible
|
|
)
|
|
|
|
examples.append(example)
|
|
|
|
if only_first is not None and len(examples) > only_first:
|
|
return examples
|
|
return examples
|
|
|
|
class SquadV1Processor(SquadProcessor):
|
|
train_file = "train-v1.1.json"
|
|
dev_file = "dev-v1.1.json"
|
|
|
|
|
|
class SquadV2Processor(SquadProcessor):
|
|
train_file = "train-v2.0.json"
|
|
dev_file = "dev-v2.0.json"
|
|
|
|
|
|
class SquadExample(object):
|
|
"""
|
|
A single training/test example for the Squad dataset, as loaded from disk.
|
|
"""
|
|
|
|
def __init__(self,
|
|
qas_id,
|
|
question_text,
|
|
context_text,
|
|
answer_text,
|
|
start_position_character,
|
|
title,
|
|
is_impossible=False):
|
|
self.qas_id = qas_id
|
|
self.question_text = question_text
|
|
self.context_text = context_text
|
|
self.answer_text = answer_text
|
|
self.title = title
|
|
self.is_impossible = is_impossible
|
|
|
|
self.start_position, self.end_position = 0, 0
|
|
|
|
doc_tokens = []
|
|
char_to_word_offset = []
|
|
prev_is_whitespace = True
|
|
|
|
# Split on whitespace so that different tokens may be attributed to their original position.
|
|
for c in self.context_text:
|
|
if _is_whitespace(c):
|
|
prev_is_whitespace = True
|
|
else:
|
|
if prev_is_whitespace:
|
|
doc_tokens.append(c)
|
|
else:
|
|
doc_tokens[-1] += c
|
|
prev_is_whitespace = False
|
|
char_to_word_offset.append(len(doc_tokens) - 1)
|
|
|
|
self.doc_tokens = doc_tokens
|
|
self.char_to_word_offset = char_to_word_offset
|
|
|
|
# Start end end positions only has a value during evaluation.
|
|
if start_position_character is not None and not is_impossible:
|
|
self.start_position = char_to_word_offset[start_position_character]
|
|
self.end_position = char_to_word_offset[start_position_character + len(answer_text) - 1]
|
|
|
|
|
|
class SquadFeatures(object):
|
|
"""
|
|
Single squad example features to be fed to a model.
|
|
Those features are model-specific.
|
|
"""
|
|
|
|
def __init__(self,
|
|
input_ids,
|
|
attention_mask,
|
|
token_type_ids,
|
|
cls_index,
|
|
p_mask,
|
|
|
|
example_index,
|
|
unique_id,
|
|
paragraph_len,
|
|
token_is_max_context,
|
|
tokens,
|
|
token_to_orig_map,
|
|
|
|
start_position,
|
|
end_position
|
|
):
|
|
self.input_ids = input_ids
|
|
self.attention_mask = attention_mask
|
|
self.token_type_ids = token_type_ids
|
|
self.cls_index = cls_index
|
|
self.p_mask = p_mask
|
|
|
|
self.example_index = example_index
|
|
self.unique_id = unique_id
|
|
self.paragraph_len = paragraph_len
|
|
self.token_is_max_context = token_is_max_context
|
|
self.tokens = tokens
|
|
self.token_to_orig_map = token_to_orig_map
|
|
|
|
self.start_position = start_position
|
|
self.end_position = end_position
|