mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-07 23:00:08 +06:00
161 lines
6.7 KiB
Python
161 lines
6.7 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import logging
|
|
import unittest
|
|
|
|
from transformers import is_torch_available
|
|
|
|
from .utils import DUMMY_UNKWOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, require_torch, slow
|
|
|
|
|
|
if is_torch_available():
|
|
from transformers import (
|
|
AutoConfig,
|
|
BertConfig,
|
|
AutoModel,
|
|
BertModel,
|
|
AutoModelForPreTraining,
|
|
BertForPreTraining,
|
|
AutoModelWithLMHead,
|
|
BertForMaskedLM,
|
|
RobertaForMaskedLM,
|
|
AutoModelForSequenceClassification,
|
|
BertForSequenceClassification,
|
|
AutoModelForQuestionAnswering,
|
|
BertForQuestionAnswering,
|
|
)
|
|
from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP
|
|
from transformers.modeling_auto import (
|
|
MODEL_MAPPING,
|
|
MODEL_FOR_PRETRAINING_MAPPING,
|
|
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
|
|
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
|
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
|
|
MODEL_WITH_LM_HEAD_MAPPING,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
class AutoModelTest(unittest.TestCase):
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
logging.basicConfig(level=logging.INFO)
|
|
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = AutoModel.from_pretrained(model_name)
|
|
model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, BertModel)
|
|
for value in loading_info.values():
|
|
self.assertEqual(len(value), 0)
|
|
|
|
@slow
|
|
def test_model_for_pretraining_from_pretrained(self):
|
|
logging.basicConfig(level=logging.INFO)
|
|
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = AutoModelForPreTraining.from_pretrained(model_name)
|
|
model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, BertForPreTraining)
|
|
for value in loading_info.values():
|
|
self.assertEqual(len(value), 0)
|
|
|
|
@slow
|
|
def test_lmhead_model_from_pretrained(self):
|
|
logging.basicConfig(level=logging.INFO)
|
|
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = AutoModelWithLMHead.from_pretrained(model_name)
|
|
model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, BertForMaskedLM)
|
|
|
|
@slow
|
|
def test_sequence_classification_model_from_pretrained(self):
|
|
logging.basicConfig(level=logging.INFO)
|
|
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
model, loading_info = AutoModelForSequenceClassification.from_pretrained(
|
|
model_name, output_loading_info=True
|
|
)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, BertForSequenceClassification)
|
|
|
|
# @slow
|
|
def test_question_answering_model_from_pretrained(self):
|
|
logging.basicConfig(level=logging.INFO)
|
|
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
|
model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, BertForQuestionAnswering)
|
|
|
|
def test_from_pretrained_identifier(self):
|
|
logging.basicConfig(level=logging.INFO)
|
|
model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
|
|
self.assertIsInstance(model, BertForMaskedLM)
|
|
self.assertEqual(model.num_parameters(), 14830)
|
|
self.assertEqual(model.num_parameters(only_trainable=True), 14830)
|
|
|
|
def test_from_identifier_from_model_type(self):
|
|
logging.basicConfig(level=logging.INFO)
|
|
model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER)
|
|
self.assertIsInstance(model, RobertaForMaskedLM)
|
|
self.assertEqual(model.num_parameters(), 14830)
|
|
self.assertEqual(model.num_parameters(only_trainable=True), 14830)
|
|
|
|
def test_parents_and_children_in_mappings(self):
|
|
# Test that the children are placed before the parents in the mappings, as the `instanceof` will be triggered
|
|
# by the parents and will return the wrong configuration type when using auto models
|
|
|
|
mappings = (
|
|
MODEL_MAPPING,
|
|
MODEL_FOR_PRETRAINING_MAPPING,
|
|
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
|
|
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
|
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
|
|
MODEL_WITH_LM_HEAD_MAPPING,
|
|
)
|
|
|
|
for mapping in mappings:
|
|
mapping = tuple(mapping.items())
|
|
for index, (child_config, child_model) in enumerate(mapping[1:]):
|
|
for parent_config, parent_model in mapping[: index + 1]:
|
|
with self.subTest(
|
|
msg="Testing if {} is child of {}".format(child_config.__name__, parent_config.__name__)
|
|
):
|
|
self.assertFalse(issubclass(child_config, parent_config))
|
|
self.assertFalse(issubclass(child_model, parent_model))
|