mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
129 lines
4.4 KiB
Python
129 lines
4.4 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Pixtral model."""
|
|
|
|
import unittest
|
|
|
|
from transformers import (
|
|
PixtralVisionConfig,
|
|
PixtralVisionModel,
|
|
is_torch_available,
|
|
)
|
|
from transformers.testing_utils import (
|
|
require_torch,
|
|
torch_device,
|
|
)
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
class PixtralVisionModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=12,
|
|
image_size=30,
|
|
patch_size=2,
|
|
num_channels=3,
|
|
is_training=True,
|
|
hidden_size=32,
|
|
projection_dim=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
dropout=0.1,
|
|
attention_dropout=0.1,
|
|
initializer_range=0.02,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.hidden_size = hidden_size
|
|
self.projection_dim = projection_dim
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
|
|
# in Pixtral, the seq length equals the number of patches * batch_size because the patches are flattened
|
|
self.seq_length = (image_size // patch_size) ** 2 * batch_size
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
image_sizes = torch.tensor(
|
|
[[self.image_size, self.image_size]] * self.batch_size, dtype=torch.long, device=torch_device
|
|
)
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values, image_sizes
|
|
|
|
def get_config(self):
|
|
return PixtralVisionConfig(
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
hidden_size=self.hidden_size,
|
|
projection_dim=self.projection_dim,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
dropout=self.dropout,
|
|
attention_dropout=self.attention_dropout,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values, image_sizes = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values, "image_sizes": image_sizes}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class PixtralVisionModelModelTest(ModelTesterMixin, unittest.TestCase):
|
|
"""
|
|
Model tester for `PixtralVisionModel`.
|
|
"""
|
|
|
|
all_model_classes = (PixtralVisionModel,) if is_torch_available() else ()
|
|
test_pruning = False
|
|
test_head_masking = False
|
|
test_torchscript = False
|
|
test_resize_embeddings = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = PixtralVisionModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=PixtralVisionConfig, has_text_modality=False)
|
|
|
|
def test_model_get_set_embeddings(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, torch.nn.Linear))
|