transformers/tests/models/got_ocr2/test_modeling_got_ocr2.py
cyyever 1e6b546ea6
Use Python 3.9 syntax in tests (#37343)
Signed-off-by: cyy <cyyever@outlook.com>
2025-04-08 14:12:08 +02:00

352 lines
14 KiB
Python

# Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch GotOcr2 model."""
import unittest
from transformers import (
AutoProcessor,
GotOcr2Config,
is_torch_available,
is_vision_available,
)
from transformers.testing_utils import cleanup, require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GotOcr2ForConditionalGeneration,
)
if is_vision_available():
from transformers.image_utils import load_image
class GotOcr2VisionText2TextModelTester:
def __init__(
self,
parent,
batch_size=3,
seq_length=7,
num_channels=3,
ignore_index=-100,
image_size=64,
bos_token_id=0,
eos_token_id=0,
pad_token_id=0,
image_token_index=1,
model_type="got_ocr2",
is_training=True,
text_config={
"model_type": "qwen2",
"vocab_size": 99,
"hidden_size": 128,
"intermediate_size": 37,
"num_hidden_layers": 4,
"num_attention_heads": 4,
"num_key_value_heads": 2,
"output_channels": 64,
"hidden_act": "silu",
"max_position_embeddings": 512,
"rope_theta": 10000,
"mlp_ratio": 4,
"tie_word_embeddings": True,
},
vision_config={
"num_hidden_layers": 2,
"output_channels": 64,
"hidden_act": "quick_gelu",
"hidden_size": 32,
"mlp_dim": 128,
"num_attention_heads": 4,
"patch_size": 2,
"image_size": 64,
},
):
self.parent = parent
self.ignore_index = ignore_index
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.image_token_index = image_token_index
self.model_type = model_type
self.text_config = text_config
self.vision_config = vision_config
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.is_training = is_training
self.num_image_tokens = 64
self.seq_length = seq_length + self.num_image_tokens
self.num_hidden_layers = text_config["num_hidden_layers"]
self.vocab_size = text_config["vocab_size"]
self.hidden_size = text_config["hidden_size"]
self.num_attention_heads = text_config["num_attention_heads"]
def get_config(self):
return GotOcr2Config(
text_config=self.text_config,
vision_config=self.vision_config,
model_type=self.model_type,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
image_token_index=self.image_token_index,
)
def prepare_config_and_inputs(self):
config = self.get_config()
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
# input_ids[:, -1] = self.pad_token_id
input_ids[input_ids == self.image_token_index] = self.pad_token_id
input_ids[:, : self.num_image_tokens] = self.image_token_index
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class GotOcr2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (GotOcr2ForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"image-to-text": GotOcr2ForConditionalGeneration,
"image-text-to-text": GotOcr2ForConditionalGeneration,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
def setUp(self):
self.model_tester = GotOcr2VisionText2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=GotOcr2Config, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
wte = model.get_input_embeddings()
inputs["inputs_embeds"] = wte(input_ids)
with torch.no_grad():
model(**inputs)
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
# while some other models require pixel_values to be present
def test_inputs_embeds_matches_input_ids(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
inputs_embeds = model.get_input_embeddings()(input_ids)
with torch.no_grad():
out_ids = model(input_ids=input_ids, **inputs)[0]
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
torch.testing.assert_close(out_embeds, out_ids)
@unittest.skip(
reason="VLMs can't generate from inputs embeds and pixels. This can be tested as part of bacbone LM, no need to run the test for VLMs"
)
def test_generate_from_inputs_embeds_with_static_cache(self):
pass
@unittest.skip(
reason="GotOcr2's language backbone is Qwen2 which uses GQA so the KV cache is a non standard format"
)
def test_past_key_values_format(self):
pass
@unittest.skip("FlashAttention only support fp16 and bf16 data type")
def test_flash_attn_2_fp32_ln(self):
pass
@require_torch
class GotOcr2IntegrationTest(unittest.TestCase):
def setUp(self):
self.processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")
def tearDown(self):
cleanup(torch_device, gc_collect=True)
@slow
def test_small_model_integration_test_got_ocr_stop_strings(self):
model_id = "stepfun-ai/GOT-OCR-2.0-hf"
model = GotOcr2ForConditionalGeneration.from_pretrained(model_id, device_map=torch_device)
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/fixtures_ocr/resolve/main/iam_picture.jpeg"
)
inputs = self.processor(image, return_tensors="pt").to(torch_device)
generate_ids = model.generate(
**inputs,
do_sample=False,
num_beams=1,
tokenizer=self.processor.tokenizer,
stop_strings="<|im_end|>",
max_new_tokens=4096,
)
decoded_output = self.processor.decode(
generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True
)
expected_output = "industre"
self.assertEqual(decoded_output, expected_output)
@slow
def test_small_model_integration_test_got_ocr_format(self):
model_id = "stepfun-ai/GOT-OCR-2.0-hf"
model = GotOcr2ForConditionalGeneration.from_pretrained(model_id, device_map=torch_device)
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/image_ocr.jpg"
)
inputs = self.processor(image, return_tensors="pt", format=True).to(torch_device)
generate_ids = model.generate(**inputs, do_sample=False, num_beams=1, max_new_tokens=4)
decoded_output = self.processor.decode(
generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True
)
expected_output = "\\title{\nR"
self.assertEqual(decoded_output, expected_output)
@slow
def test_small_model_integration_test_got_ocr_fine_grained(self):
model_id = "stepfun-ai/GOT-OCR-2.0-hf"
model = GotOcr2ForConditionalGeneration.from_pretrained(model_id, device_map=torch_device)
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/multi_box.png"
)
inputs = self.processor(image, return_tensors="pt", color="green").to(torch_device)
generate_ids = model.generate(**inputs, do_sample=False, num_beams=1, max_new_tokens=4)
decoded_output = self.processor.decode(
generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True
)
expected_output = "You should keep in"
self.assertEqual(decoded_output, expected_output)
@slow
def test_small_model_integration_test_got_ocr_crop_to_patches(self):
model_id = "stepfun-ai/GOT-OCR-2.0-hf"
model = GotOcr2ForConditionalGeneration.from_pretrained(model_id, device_map=torch_device)
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/one_column.png"
)
inputs = self.processor(image, return_tensors="pt", crop_to_patches=True).to(torch_device)
generate_ids = model.generate(**inputs, do_sample=False, num_beams=1, max_new_tokens=4)
decoded_output = self.processor.decode(
generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True
)
expected_output = "on developing architectural improvements"
self.assertEqual(decoded_output, expected_output)
@slow
def test_small_model_integration_test_got_ocr_multi_pages(self):
model_id = "stepfun-ai/GOT-OCR-2.0-hf"
model = GotOcr2ForConditionalGeneration.from_pretrained(model_id, device_map=torch_device)
image1 = load_image(
"https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/one_column.png"
)
image2 = load_image(
"https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/multi_box.png"
)
inputs = self.processor([image1, image2], return_tensors="pt", multi_page=True).to(torch_device)
generate_ids = model.generate(**inputs, do_sample=False, num_beams=1, max_new_tokens=4)
decoded_output = self.processor.decode(
generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True
)
expected_output = "on developing architectural improvements"
self.assertEqual(decoded_output, expected_output)
@slow
def test_small_model_integration_test_got_ocr_batched(self):
model_id = "stepfun-ai/GOT-OCR-2.0-hf"
model = GotOcr2ForConditionalGeneration.from_pretrained(model_id, device_map=torch_device)
image1 = load_image(
"https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/multi_box.png"
)
image2 = load_image(
"https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/image_ocr.jpg"
)
inputs = self.processor([image1, image2], return_tensors="pt").to(torch_device)
generate_ids = model.generate(**inputs, do_sample=False, num_beams=1, max_new_tokens=4)
decoded_output = self.processor.batch_decode(
generate_ids[:, inputs["input_ids"].shape[1] :], skip_special_tokens=True
)
expected_output = ["Reducing the number", "R&D QUALITY"]
self.assertEqual(decoded_output, expected_output)