transformers/tests/models/encodec/test_modeling_encodec.py
cyyever 1e6b546ea6
Use Python 3.9 syntax in tests (#37343)
Signed-off-by: cyy <cyyever@outlook.com>
2025-04-08 14:12:08 +02:00

636 lines
26 KiB
Python

# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Encodec model."""
import copy
import inspect
import os
import tempfile
import unittest
import numpy as np
from datasets import Audio, load_dataset
from transformers import AutoProcessor, EncodecConfig
from transformers.testing_utils import (
is_torch_available,
require_torch,
slow,
torch_device,
)
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EncodecFeatureExtractor, EncodecModel
def prepare_inputs_dict(
config,
input_ids=None,
input_values=None,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if input_ids is not None:
encoder_dict = {"input_ids": input_ids}
else:
encoder_dict = {"input_values": input_values}
decoder_dict = {"decoder_input_ids": decoder_input_ids} if decoder_input_ids is not None else {}
return {**encoder_dict, **decoder_dict}
@require_torch
class EncodecModelTester:
def __init__(
self,
parent,
# `batch_size` needs to be an even number if the model has some outputs with batch dim != 0.
batch_size=12,
num_channels=2,
is_training=False,
intermediate_size=40,
hidden_size=32,
num_filters=8,
num_residual_layers=1,
upsampling_ratios=[8, 4],
num_lstm_layers=1,
codebook_size=64,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.is_training = is_training
self.intermediate_size = intermediate_size
self.hidden_size = hidden_size
self.num_filters = num_filters
self.num_residual_layers = num_residual_layers
self.upsampling_ratios = upsampling_ratios
self.num_lstm_layers = num_lstm_layers
self.codebook_size = codebook_size
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0)
config = self.get_config()
inputs_dict = {"input_values": input_values}
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def prepare_config_and_inputs_for_model_class(self, model_class):
config, inputs_dict = self.prepare_config_and_inputs()
inputs_dict["audio_codes"] = ids_tensor([1, self.batch_size, 1, self.num_channels], self.codebook_size).type(
torch.int32
)
inputs_dict["audio_scales"] = [None]
return config, inputs_dict
def prepare_config_and_inputs_for_normalization(self):
input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0)
config = self.get_config()
config.normalize = True
processor = EncodecFeatureExtractor(feature_size=config.audio_channels, sampling_rate=config.sampling_rate)
input_values = input_values.tolist()
inputs_dict = processor(
input_values, sampling_rate=config.sampling_rate, padding=True, return_tensors="pt"
).to(torch_device)
return config, inputs_dict
def get_config(self):
return EncodecConfig(
audio_channels=self.num_channels,
chunk_in_sec=None,
hidden_size=self.hidden_size,
num_filters=self.num_filters,
num_residual_layers=self.num_residual_layers,
upsampling_ratios=self.upsampling_ratios,
num_lstm_layers=self.num_lstm_layers,
codebook_size=self.codebook_size,
)
def create_and_check_model_forward(self, config, inputs_dict):
model = EncodecModel(config=config).to(torch_device).eval()
result = model(**inputs_dict)
self.parent.assertEqual(
result.audio_values.shape, (self.batch_size, self.num_channels, self.intermediate_size)
)
@require_torch
class EncodecModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (EncodecModel,) if is_torch_available() else ()
is_encoder_decoder = True
test_pruning = False
test_headmasking = False
test_resize_embeddings = False
pipeline_model_mapping = {"feature-extraction": EncodecModel} if is_torch_available() else {}
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
# model does not have attention and does not support returning hidden states
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if "output_attentions" in inputs_dict:
inputs_dict.pop("output_attentions")
if "output_hidden_states" in inputs_dict:
inputs_dict.pop("output_hidden_states")
return inputs_dict
def setUp(self):
self.model_tester = EncodecModelTester(self)
self.config_tester = ConfigTester(
self, config_class=EncodecConfig, hidden_size=37, common_properties=[], has_text_modality=False
)
def test_config(self):
self.config_tester.run_common_tests()
def test_model_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_forward(*config_and_inputs)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_values", "padding_mask", "bandwidth"]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@unittest.skip(reason="The EncodecModel is not transformers based, thus it does not have `inputs_embeds` logics")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="The EncodecModel is not transformers based, thus it does not have `inputs_embeds` logics")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(
reason="The EncodecModel is not transformers based, thus it does not have the usual `attention` logic"
)
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(
reason="The EncodecModel is not transformers based, thus it does not have the usual `attention` logic"
)
def test_torchscript_output_attentions(self):
pass
@unittest.skip(
reason="The EncodecModel is not transformers based, thus it does not have the usual `hidden_states` logic"
)
def test_torchscript_output_hidden_state(self):
pass
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
self.skipTest(reason="test_torchscript is set to False")
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
main_input_name = model_class.main_input_name
try:
main_input = inputs[main_input_name]
model(main_input)
traced_model = torch.jit.trace(model, main_input)
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
if layer_name in loaded_model_state_dict:
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
# (Even with this call, there are still memory leak by ~0.04MB)
self.clear_torch_jit_class_registry()
@unittest.skip(
reason="The EncodecModel is not transformers based, thus it does not have the usual `attention` logic"
)
def test_attention_outputs(self):
pass
def test_feed_forward_chunking(self):
(original_config, inputs_dict) = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
torch.manual_seed(0)
config = copy.deepcopy(original_config)
config.chunk_length_s = None
config.overlap = None
config.sampling_rate = 10
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
inputs["input_values"] = inputs["input_values"].repeat(1, 1, 10)
hidden_states_no_chunk = model(**inputs)[1]
torch.manual_seed(0)
config.chunk_length_s = 1
config.overlap = 0
config.sampling_rate = 10
model = model_class(config)
model.to(torch_device)
model.eval()
hidden_states_with_chunk = model(**inputs)[1]
torch.testing.assert_close(hidden_states_no_chunk, hidden_states_with_chunk, rtol=1e-1, atol=1e-2)
@unittest.skip(
reason="The EncodecModel is not transformers based, thus it does not have the usual `hidden_states` logic"
)
def test_hidden_states_output(self):
pass
@unittest.skip(reason="No support for low_cpu_mem_usage=True.")
def test_save_load_low_cpu_mem_usage(self):
pass
@unittest.skip(reason="No support for low_cpu_mem_usage=True.")
def test_save_load_low_cpu_mem_usage_checkpoints(self):
pass
@unittest.skip(reason="No support for low_cpu_mem_usage=True.")
def test_save_load_low_cpu_mem_usage_no_safetensors(self):
pass
def test_determinism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_determinism(first, second):
# outputs are not tensors but list (since each sequence don't have the same frame_length)
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
if isinstance(first, tuple) and isinstance(second, tuple):
for tensor1, tensor2 in zip(first, second):
check_determinism(tensor1, tensor2)
else:
check_determinism(first, second)
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs)
self.assertTrue(isinstance(tuple_output, tuple))
self.assertTrue(isinstance(dict_output, dict))
for tuple_value, dict_value in zip(tuple_output, dict_output.values()):
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_value), set_nan_tensor_to_zero(dict_value), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_value - dict_value))}. Tuple has `nan`:"
f" {torch.isnan(tuple_value).any()} and `inf`: {torch.isinf(tuple_value)}. Dict has"
f" `nan`: {torch.isnan(dict_value).any()} and `inf`: {torch.isinf(dict_value)}."
),
)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = ["conv"]
ignore_init = ["lstm"]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
elif not any(x in name for x in ignore_init):
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_identity_shortcut(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
config.use_conv_shortcut = False
self.model_tester.create_and_check_model_forward(config, inputs_dict)
def test_model_forward_with_normalization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_normalization()
self.model_tester.create_and_check_model_forward(config, inputs_dict)
def normalize(arr):
norm = np.linalg.norm(arr)
normalized_arr = arr / norm
return normalized_arr
def compute_rmse(arr1, arr2):
arr1_normalized = normalize(arr1)
arr2_normalized = normalize(arr2)
return np.sqrt(((arr1_normalized - arr2_normalized) ** 2).mean())
@slow
@require_torch
class EncodecIntegrationTest(unittest.TestCase):
def test_integration_24kHz(self):
expected_rmse = {
"1.5": 0.0025,
"24.0": 0.0015,
}
expected_codesums = {
"1.5": [371955],
"24.0": [6659962],
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_id = "facebook/encodec_24khz"
model = EncodecModel.from_pretrained(model_id).to(torch_device)
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[-1]["audio"]["array"]
inputs = processor(
raw_audio=audio_sample,
sampling_rate=processor.sampling_rate,
return_tensors="pt",
).to(torch_device)
for bandwidth, expected_rmse in expected_rmse.items():
with torch.no_grad():
# use max bandwidth for best possible reconstruction
encoder_outputs = model.encode(inputs["input_values"], bandwidth=float(bandwidth))
audio_code_sums = [a[0].sum().item() for a in encoder_outputs[0]]
# make sure audio encoded codes are correct
self.assertListEqual(audio_code_sums, expected_codesums[bandwidth])
audio_codes, scales = encoder_outputs.to_tuple()
input_values_dec = model.decode(audio_codes, scales, inputs["padding_mask"])[0]
input_values_enc_dec = model(
inputs["input_values"], inputs["padding_mask"], bandwidth=float(bandwidth)
)[-1]
# make sure forward and decode gives same result
torch.testing.assert_close(input_values_dec, input_values_enc_dec, rtol=1e-3, atol=1e-3)
# make sure shape matches
self.assertTrue(inputs["input_values"].shape == input_values_enc_dec.shape)
arr = inputs["input_values"][0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
# make sure audios are more or less equal
# the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
rmse = compute_rmse(arr, arr_enc_dec)
self.assertTrue(rmse < expected_rmse)
def test_integration_48kHz(self):
expected_rmse = {
"3.0": 0.001,
"24.0": 0.0005,
}
expected_codesums = {
"3.0": [144259, 146765, 156435, 176871, 161971],
"24.0": [1568553, 1294948, 1306190, 1464747, 1663150],
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_id = "facebook/encodec_48khz"
model = EncodecModel.from_pretrained(model_id).to(torch_device)
model = model.eval()
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[-1]["audio"]["array"]
# transform mono to stereo
audio_sample = np.array([audio_sample, audio_sample])
inputs = processor(raw_audio=audio_sample, sampling_rate=processor.sampling_rate, return_tensors="pt").to(
torch_device
)
for bandwidth, expected_rmse in expected_rmse.items():
with torch.no_grad():
# use max bandwidth for best possible reconstruction
encoder_outputs = model.encode(
inputs["input_values"], inputs["padding_mask"], bandwidth=float(bandwidth), return_dict=False
)
audio_code_sums = [a[0].sum().item() for a in encoder_outputs[0]]
# make sure audio encoded codes are correct
self.assertListEqual(audio_code_sums, expected_codesums[bandwidth])
audio_codes, scales = encoder_outputs
input_values_dec = model.decode(audio_codes, scales, inputs["padding_mask"])[0]
input_values_enc_dec = model(
inputs["input_values"], inputs["padding_mask"], bandwidth=float(bandwidth)
)[-1]
# make sure forward and decode gives same result
torch.testing.assert_close(input_values_dec, input_values_enc_dec, rtol=1e-3, atol=1e-3)
# make sure shape matches
self.assertTrue(inputs["input_values"].shape == input_values_enc_dec.shape)
arr = inputs["input_values"][0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
# make sure audios are more or less equal
# the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
rmse = compute_rmse(arr, arr_enc_dec)
self.assertTrue(rmse < expected_rmse)
def test_batch_48kHz(self):
expected_rmse = {
"3.0": 0.001,
"24.0": 0.0005,
}
expected_codesums = {
"3.0": [
[72410, 79137, 76694, 90854, 73023, 82980, 72707, 54842],
[85561, 81870, 76953, 48967, 79315, 85442, 81479, 107241],
],
"24.0": [
[72410, 79137, 76694, 90854, 73023, 82980, 72707, 54842],
[85561, 81870, 76953, 48967, 79315, 85442, 81479, 107241],
],
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_id = "facebook/encodec_48khz"
model = EncodecModel.from_pretrained(model_id).to(torch_device)
processor = AutoProcessor.from_pretrained(model_id, chunk_length_s=1, overlap=0.01)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_samples = [
np.array([audio_sample["array"], audio_sample["array"]])
for audio_sample in librispeech_dummy[-2:]["audio"]
]
inputs = processor(raw_audio=audio_samples, sampling_rate=processor.sampling_rate, return_tensors="pt")
input_values = inputs["input_values"].to(torch_device)
for bandwidth, expected_rmse in expected_rmse.items():
with torch.no_grad():
# use max bandwidth for best possible reconstruction
encoder_outputs = model.encode(input_values, bandwidth=float(bandwidth), return_dict=False)
audio_code_sums_0 = [a[0][0].sum().item() for a in encoder_outputs[0]]
audio_code_sums_1 = [a[0][1].sum().item() for a in encoder_outputs[0]]
# make sure audio encoded codes are correct
self.assertListEqual(audio_code_sums_0, expected_codesums[bandwidth][0])
self.assertListEqual(audio_code_sums_1, expected_codesums[bandwidth][1])
audio_codes, scales = encoder_outputs
input_values_dec = model.decode(audio_codes, scales)[0]
input_values_enc_dec = model(input_values, bandwidth=float(bandwidth))[-1]
# make sure forward and decode gives same result
torch.testing.assert_close(input_values_dec, input_values_enc_dec, rtol=1e-3, atol=1e-3)
# make sure shape matches
self.assertTrue(input_values.shape == input_values_enc_dec.shape)
arr = input_values[0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
# make sure audios are more or less equal
# the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
rmse = compute_rmse(arr, arr_enc_dec)
self.assertTrue(rmse < expected_rmse)