mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00
529 lines
21 KiB
Python
529 lines
21 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch emu3 model."""
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import requests
|
|
from huggingface_hub import hf_hub_download
|
|
from parameterized import parameterized
|
|
|
|
from transformers import Emu3Config, Emu3TextConfig, is_torch_available, is_vision_available, set_seed
|
|
from transformers.testing_utils import (
|
|
require_bitsandbytes,
|
|
require_torch,
|
|
require_torch_large_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
Emu3ForCausalLM,
|
|
Emu3ForConditionalGeneration,
|
|
Emu3Processor,
|
|
Emu3TextModel,
|
|
)
|
|
|
|
|
|
class Emu3Text2TextModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=False,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=2,
|
|
num_key_value_heads=2,
|
|
intermediate_size=37,
|
|
max_position_embeddings=512,
|
|
initializer_range=0.02,
|
|
pad_token_id=0,
|
|
bos_token_id=1,
|
|
eos_token_id=2,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.initializer_range = initializer_range
|
|
self.pad_token_id = pad_token_id
|
|
self.bos_token_id = bos_token_id
|
|
self.eos_token_id = eos_token_id
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, attention_mask
|
|
|
|
def get_config(self):
|
|
return Emu3TextConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
num_key_value_heads=self.num_key_value_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
is_decoder=False,
|
|
initializer_range=self.initializer_range,
|
|
pad_token_id=self.pad_token_id,
|
|
bos_token_id=self.bos_token_id,
|
|
eos_token_id=self.eos_token_id,
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class Emu3Text2TextModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (Emu3ForCausalLM,) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{
|
|
"text-generation": Emu3ForCausalLM,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
fx_compatible = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = Emu3Text2TextModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=Emu3TextConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@parameterized.expand([("linear",), ("dynamic",)])
|
|
def test_model_rope_scaling(self, scaling_type):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
short_input = ids_tensor([1, 10], config.vocab_size)
|
|
long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)
|
|
|
|
set_seed(42) # Fixed seed at init time so the two models get the same random weights
|
|
original_model = Emu3TextModel(config)
|
|
original_model.to(torch_device)
|
|
original_model.eval()
|
|
original_short_output = original_model(short_input).last_hidden_state
|
|
original_long_output = original_model(long_input).last_hidden_state
|
|
|
|
set_seed(42) # Fixed seed at init time so the two models get the same random weights
|
|
config.rope_scaling = {"type": scaling_type, "factor": 10.0}
|
|
scaled_model = Emu3TextModel(config)
|
|
scaled_model.to(torch_device)
|
|
scaled_model.eval()
|
|
scaled_short_output = scaled_model(short_input).last_hidden_state
|
|
scaled_long_output = scaled_model(long_input).last_hidden_state
|
|
|
|
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
|
|
# maximum sequence length, so the outputs for the short input should match.
|
|
if scaling_type == "dynamic":
|
|
torch.testing.assert_close(original_short_output, scaled_short_output, rtol=1e-5, atol=1e-5)
|
|
else:
|
|
self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
|
|
|
|
# The output should be different for long inputs
|
|
self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
|
|
|
|
@unittest.skip("Doesn't work, tensors are not almost same") # TODO raushan fixme
|
|
def test_custom_4d_attention_mask(self):
|
|
pass
|
|
|
|
|
|
class Emu3Vision2TextModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=False,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=2,
|
|
num_key_value_heads=2,
|
|
intermediate_size=37,
|
|
max_position_embeddings=512,
|
|
initializer_range=0.02,
|
|
pad_token_id=0,
|
|
bos_token_id=1,
|
|
eos_token_id=2,
|
|
image_token_id=3,
|
|
image_size=30,
|
|
codebook_size=20,
|
|
temporal_downsample_factor=1,
|
|
base_channels=32,
|
|
vq_channel_multiplier=[1, 1],
|
|
image_seq_length=100,
|
|
vq_img_token_start_id=3,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.is_training = is_training
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.initializer_range = initializer_range
|
|
self.pad_token_id = pad_token_id
|
|
self.bos_token_id = bos_token_id
|
|
self.eos_token_id = eos_token_id
|
|
self.image_token_id = image_token_id
|
|
self.image_size = image_size
|
|
self.codebook_size = codebook_size
|
|
self.temporal_downsample_factor = temporal_downsample_factor
|
|
self.vq_channel_multiplier = vq_channel_multiplier
|
|
self.vq_img_token_start_id = vq_img_token_start_id
|
|
self.base_channels = base_channels
|
|
self.seq_length = seq_length + image_seq_length
|
|
self.image_seq_length = image_seq_length
|
|
|
|
def prepare_config_and_inputs(self):
|
|
config = self.get_config()
|
|
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size)
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
input_ids[input_ids == self.image_token_id] = self.pad_token_id
|
|
input_ids[:, : self.image_seq_length] = self.image_token_id
|
|
|
|
pixel_values = floats_tensor(
|
|
[
|
|
self.batch_size,
|
|
3,
|
|
self.image_size,
|
|
self.image_size,
|
|
]
|
|
)
|
|
image_sizes = [[self.image_size, self.image_size]] * self.batch_size
|
|
image_sizes = torch.tensor(image_sizes, device=torch_device, dtype=torch.int64)
|
|
|
|
return config, input_ids, attention_mask, pixel_values, image_sizes
|
|
|
|
def get_config(self):
|
|
# create dummy vocab map for image2bpe mapping if it needs remapping
|
|
# we assume that vocab size is big enough to account for `codebook_size` amount of
|
|
# image tokens somewhere at the beginning of total vocab size
|
|
|
|
vocab_map = {i: chr(i) for i in range(self.vocab_size)}
|
|
start = self.vq_img_token_start_id
|
|
end = self.vq_img_token_start_id + self.codebook_size
|
|
for i in range(start, end):
|
|
# dummy str for each token, anything that fits pattern "<|visual token XXXXXX|>"
|
|
vocab_map[i] = f"<|visual token{i:06d}|>"
|
|
|
|
# add tokens that have to be in the vocab, we'll retrieve their ids later in modeling code
|
|
vocab_map[self.image_token_id] = "<image>"
|
|
vocab_map[self.image_token_id + 1] = "<|extra_200|>"
|
|
vocab_map = {v: k for k, v in vocab_map.items()}
|
|
|
|
text_config = Emu3TextConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
num_key_value_heads=self.num_key_value_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
initializer_range=self.initializer_range,
|
|
pad_token_id=self.pad_token_id,
|
|
bos_token_id=self.bos_token_id,
|
|
eos_token_id=self.eos_token_id,
|
|
)
|
|
|
|
vq_config = {
|
|
"codebook_size": self.codebook_size,
|
|
"temporal_downsample_factor": self.temporal_downsample_factor,
|
|
"base_channels": self.base_channels,
|
|
"channel_multiplier": self.vq_channel_multiplier,
|
|
"hidden_size": self.base_channels,
|
|
}
|
|
return Emu3Config(text_config=text_config, vq_config=vq_config, vocabulary_map=vocab_map)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
pixel_values,
|
|
image_sizes,
|
|
) = config_and_inputs
|
|
inputs_dict = {
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"pixel_values": pixel_values,
|
|
"image_sizes": image_sizes,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class Emu3Vision2TextModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (Emu3ForConditionalGeneration,) if is_torch_available() else ()
|
|
pipeline_model_mapping = {}
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
fx_compatible = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = Emu3Vision2TextModelTester(self)
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=Emu3Config, has_text_modality=False, common_properties=["vocabulary_map"]
|
|
)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
def test_inputs_embeds(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values"]
|
|
|
|
wte = model.get_input_embeddings()
|
|
inputs["inputs_embeds"] = wte(input_ids)
|
|
|
|
with torch.no_grad():
|
|
model(**inputs)
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
# while some other models require pixel_values to be present
|
|
def test_inputs_embeds_matches_input_ids(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values"]
|
|
|
|
inputs_embeds = model.get_input_embeddings()(input_ids)
|
|
|
|
with torch.no_grad():
|
|
out_ids = model(input_ids=input_ids, **inputs)[0]
|
|
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
|
|
torch.testing.assert_close(out_embeds, out_ids)
|
|
|
|
@unittest.skip(
|
|
"Emu3 has a VQ module that uses `weight.data` directly in forward which prevent offloding on that module"
|
|
)
|
|
def test_disk_offload_safetensors(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
"Emu3 has a VQ module that uses `weight.data` directly in forward which prevent offloding on that module"
|
|
)
|
|
def test_disk_offload_bin(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
"Emu3 has a VQ module that uses `weight.data` directly in forward which prevent offloding on that module"
|
|
)
|
|
def test_cpu_offload(self):
|
|
pass
|
|
|
|
@unittest.skip("VQ-VAE module doesn't initialize weights properly")
|
|
def test_initialization(self):
|
|
pass
|
|
|
|
@pytest.mark.generate
|
|
@unittest.skip("Emu3 has dynamic control flow in vision backbone")
|
|
def test_generate_with_static_cache(self):
|
|
pass
|
|
|
|
|
|
@require_torch
|
|
class Emu3IntegrationTest(unittest.TestCase):
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_model_generation(self):
|
|
model = Emu3ForConditionalGeneration.from_pretrained("BAAI/Emu3-Chat-hf", load_in_4bit=True)
|
|
processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf")
|
|
|
|
image = Image.open(requests.get("https://picsum.photos/id/237/200/200", stream=True).raw)
|
|
prompt = "USER: <image>Describe what do you see here and tell me about the history behind it? ASSISTANT:"
|
|
|
|
inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device, torch.float16)
|
|
|
|
# greedy generation outputs
|
|
EXPECTED_TEXT_COMPLETION = ['USER: 64*64Describe what do you see here and tell me about the history behind it? ASSISTANT: The image captures a moment of tranquility with a black Labrador Retriever resting on a wooden floor. The dog, with its glossy black coat, is lying down with its front legs stretched out in'] # fmt: skip
|
|
generated_ids = model.generate(**inputs, max_new_tokens=40, do_sample=False)
|
|
text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
@require_torch_large_gpu
|
|
def test_model_generation_batched(self):
|
|
model = Emu3ForConditionalGeneration.from_pretrained("BAAI/Emu3-Chat-hf", load_in_4bit=True)
|
|
processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf")
|
|
processor.tokenizer.padding_side = "left"
|
|
|
|
image = Image.open(requests.get("https://picsum.photos/id/237/50/50", stream=True).raw)
|
|
image_2 = Image.open(requests.get("https://picsum.photos/id/247/50/50", stream=True).raw)
|
|
prompts = [
|
|
"USER: <image>Describe what do you see here? ASSISTANT:",
|
|
"USER: <image>What can you say about the image? ASSISTANT:",
|
|
]
|
|
|
|
inputs = processor(images=[image, image_2], text=prompts, padding=True, return_tensors="pt").to(
|
|
model.device, torch.float16
|
|
)
|
|
|
|
# greedy generation outputs
|
|
EXPECTED_TEXT_COMPLETION = [
|
|
"USER: 64*64Describe what do you see here? ASSISTANT: The image depicts a black panther in a crouched position. The panther's body is elongated and curved, with its head lowered and ears pointed forward, suggesting alertness or focus.",
|
|
'USER: 64*64What can you say about the image? ASSISTANT: The image depicts a serene natural landscape. The foreground consists of a grassy area with some patches of bare earth. The middle ground shows a steep, reddish-brown cliff, which could be a'
|
|
] # fmt: skip
|
|
generated_ids = model.generate(**inputs, max_new_tokens=40, do_sample=False)
|
|
text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
@require_torch_large_gpu
|
|
def test_model_generation_multi_image(self):
|
|
model = Emu3ForConditionalGeneration.from_pretrained("BAAI/Emu3-Chat-hf", load_in_4bit=True)
|
|
processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf")
|
|
|
|
image = Image.open(requests.get("https://picsum.photos/id/237/50/50", stream=True).raw)
|
|
image_2 = Image.open(requests.get("https://picsum.photos/id/247/50/50", stream=True).raw)
|
|
prompt = "USER: <image><image>What do these two images have in common? ASSISTANT:"
|
|
|
|
inputs = processor(images=[image, image_2], text=prompt, return_tensors="pt").to(model.device, torch.float16)
|
|
|
|
# greedy generation outputs
|
|
EXPECTED_TEXT_COMPLETION = ["USER: 64*6464*64What do these two images have in common? ASSISTANT: Both images feature a black animal, but they are not the same animal. The top image shows a close-up of a black cow's head, while the bottom image depicts a black cow in a natural"] # fmt: skip
|
|
generated_ids = model.generate(**inputs, max_new_tokens=40, do_sample=False)
|
|
text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
@require_torch_large_gpu
|
|
def test_model_generate_images(self):
|
|
model = Emu3ForConditionalGeneration.from_pretrained("BAAI/Emu3-Gen-hf", load_in_4bit=True)
|
|
processor = Emu3Processor.from_pretrained("BAAI/Emu3-Gen-hf")
|
|
|
|
inputs = processor(
|
|
text=["a portrait of young girl. masterpiece, film grained, best quality."],
|
|
padding=True,
|
|
return_tensors="pt",
|
|
return_for_image_generation=True,
|
|
image_area=1600,
|
|
).to(model.device)
|
|
self.assertTrue(inputs.input_ids.shape[1] == 21)
|
|
|
|
image_sizes = inputs.pop("image_sizes")
|
|
HEIGHT, WIDTH = image_sizes[0]
|
|
VISUAL_TOKENS = model.vocabulary_mapping.image_tokens
|
|
|
|
def prefix_allowed_tokens_fn(batch_id, input_ids):
|
|
height, width = HEIGHT, WIDTH
|
|
visual_tokens = VISUAL_TOKENS
|
|
image_wrapper_token_id = torch.tensor([processor.tokenizer.image_wrapper_token_id], device=model.device)
|
|
eoi_token_id = torch.tensor([processor.tokenizer.eoi_token_id], device=model.device)
|
|
eos_token_id = torch.tensor([processor.tokenizer.eos_token_id], device=model.device)
|
|
pad_token_id = torch.tensor([processor.tokenizer.pad_token_id], device=model.device)
|
|
eof_token_id = torch.tensor([processor.tokenizer.eof_token_id], device=model.device)
|
|
eol_token_id = processor.tokenizer.encode("<|extra_200|>", return_tensors="pt")[0]
|
|
|
|
position = torch.nonzero(input_ids == image_wrapper_token_id, as_tuple=True)[0][0]
|
|
offset = input_ids.shape[0] - position
|
|
if offset % (width + 1) == 0:
|
|
return (eol_token_id,)
|
|
elif offset == (width + 1) * height + 1:
|
|
return (eof_token_id,)
|
|
elif offset == (width + 1) * height + 2:
|
|
return (eoi_token_id,)
|
|
elif offset == (width + 1) * height + 3:
|
|
return (eos_token_id,)
|
|
elif offset > (width + 1) * height + 3:
|
|
return (pad_token_id,)
|
|
else:
|
|
return visual_tokens
|
|
|
|
out = model.generate(
|
|
**inputs,
|
|
max_new_tokens=200,
|
|
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
|
do_sample=False,
|
|
)
|
|
self.assertTrue(out.shape[1] == 54)
|
|
|
|
image = model.decode_image_tokens(out[:, inputs.input_ids.shape[1] :], height=HEIGHT, width=WIDTH)
|
|
images = processor.postprocess(list(image.float()), return_tensors="np")
|
|
self.assertTrue(images["pixel_values"].shape == (3, 40, 40))
|
|
self.assertTrue(isinstance(images["pixel_values"], np.ndarray))
|
|
|
|
filepath = hf_hub_download(
|
|
repo_id="raushan-testing-hf/images_test",
|
|
filename="emu3_image.npy",
|
|
repo_type="dataset",
|
|
)
|
|
original_pixels = np.load(filepath)
|
|
self.assertTrue(np.allclose(original_pixels, images["pixel_values"]))
|