transformers/tests/models/aria/test_processor_aria.py
cyyever 1e6b546ea6
Use Python 3.9 syntax in tests (#37343)
Signed-off-by: cyy <cyyever@outlook.com>
2025-04-08 14:12:08 +02:00

440 lines
18 KiB
Python

# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
from io import BytesIO
from typing import Optional
import numpy as np
import requests
from transformers import AriaProcessor
from transformers.models.auto.processing_auto import AutoProcessor
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_vision_available():
from PIL import Image
@require_torch
@require_vision
class AriaProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = AriaProcessor
@classmethod
def setUpClass(cls):
cls.tmpdirname = tempfile.mkdtemp()
processor = AriaProcessor.from_pretrained("m-ric/Aria_hf_2", image_seq_len=2)
processor.save_pretrained(cls.tmpdirname)
cls.image1 = Image.open(
BytesIO(
requests.get(
"https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
).content
)
)
cls.image2 = Image.open(
BytesIO(requests.get("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg").content)
)
cls.image3 = Image.open(
BytesIO(
requests.get(
"https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg"
).content
)
)
cls.bos_token = "<|im_start|>"
cls.eos_token = "<|im_end|>"
cls.image_token = processor.tokenizer.image_token
cls.fake_image_token = "o"
cls.global_img_token = "<|img|>"
cls.bos_token_id = processor.tokenizer.convert_tokens_to_ids(cls.bos_token)
cls.eos_token_id = processor.tokenizer.convert_tokens_to_ids(cls.eos_token)
cls.image_token_id = processor.tokenizer.convert_tokens_to_ids(cls.image_token)
cls.fake_image_token_id = processor.tokenizer.convert_tokens_to_ids(cls.fake_image_token)
cls.global_img_tokens_id = processor.tokenizer(cls.global_img_token, add_special_tokens=False)["input_ids"]
cls.padding_token_id = processor.tokenizer.pad_token_id
cls.image_seq_len = 256
def get_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
def get_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs)
@classmethod
def tearDownClass(cls):
shutil.rmtree(cls.tmpdirname)
def test_kwargs_overrides_default_image_processor_kwargs(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
processor_components = self.prepare_components()
processor_components["image_processor"] = self.get_component(
"image_processor", do_rescale=True, rescale_factor=1
)
processor_components["tokenizer"] = self.get_component("tokenizer", max_length=117, padding="max_length")
processor = self.processor_class(**processor_components)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs()
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input, return_tensors="pt")
self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0)
def test_process_interleaved_images_prompts_image_splitting(self):
processor = self.get_processor()
processor.image_processor.split_image = True
# Test that a single image is processed correctly
inputs = processor(images=self.image1, text="Ok<|img|>", images_kwargs={"split_image": True})
self.assertEqual(np.array(inputs["pixel_values"]).shape, (2, 3, 980, 980))
self.assertEqual(np.array(inputs["pixel_mask"]).shape, (2, 980, 980))
def test_process_interleaved_images_prompts_no_image_splitting(self):
processor = self.get_processor()
processor.image_processor.split_image = False
# Test that a single image is processed correctly
inputs = processor(images=self.image1, text="Ok<|img|>")
image1_expected_size = (980, 980)
self.assertEqual(np.array(inputs["pixel_values"]).shape, (1, 3, *image1_expected_size))
self.assertEqual(np.array(inputs["pixel_mask"]).shape, (1, *image1_expected_size))
# fmt: on
# Test a single sample with image and text
image_str = "<|img|>"
text_str = "In this image, we see"
text = image_str + text_str
inputs = processor(text=text, images=self.image1)
# fmt: off
tokenized_sentence = processor.tokenizer(text_str, add_special_tokens=False)
expected_input_ids = [[self.image_token_id] * self.image_seq_len + tokenized_sentence["input_ids"]]
# self.assertEqual(len(inputs["input_ids"]), len(expected_input_ids))
self.assertEqual(inputs["input_ids"], expected_input_ids)
self.assertEqual(inputs["attention_mask"], [[1] * len(expected_input_ids[0])])
self.assertEqual(np.array(inputs["pixel_values"]).shape, (1, 3, *image1_expected_size))
self.assertEqual(np.array(inputs["pixel_mask"]).shape, (1, *image1_expected_size))
# fmt: on
# Test that batch is correctly processed
image_str = "<|img|>"
text_str_1 = "In this image, we see"
text_str_2 = "In this image, we see"
text = [
image_str + text_str_1,
image_str + image_str + text_str_2,
]
images = [[self.image1], [self.image2, self.image3]]
inputs = processor(text=text, images=images, padding=True)
# fmt: off
tokenized_sentence_1 = processor.tokenizer(text_str_1, add_special_tokens=False)
tokenized_sentence_2 = processor.tokenizer(text_str_2, add_special_tokens=False)
image_tokens = [self.image_token_id] * self.image_seq_len
expected_input_ids_1 = image_tokens + tokenized_sentence_1["input_ids"]
expected_input_ids_2 = 2 * image_tokens + tokenized_sentence_2["input_ids"]
# Pad the first input to match the second input
pad_len = len(expected_input_ids_2) - len(expected_input_ids_1)
expected_attention_mask = [[0] * pad_len + [1] * len(expected_input_ids_1), [1] * (len(expected_input_ids_2))]
self.assertEqual(
inputs["attention_mask"],
expected_attention_mask
)
self.assertEqual(np.array(inputs['pixel_values']).shape, (3, 3, 980, 980))
self.assertEqual(np.array(inputs['pixel_mask']).shape, (3, 980, 980))
# fmt: on
def test_non_nested_images_with_batched_text(self):
processor = self.get_processor()
processor.image_processor.do_image_splitting = False
image_str = "<|img|>"
text_str_1 = "In this image, we see"
text_str_2 = "In this image, we see"
text = [
image_str + text_str_1,
image_str + image_str + text_str_2,
]
images = [self.image1, self.image2, self.image3]
inputs = processor(text=text, images=images, padding=True)
self.assertEqual(np.array(inputs["pixel_values"]).shape, (3, 3, 980, 980))
self.assertEqual(np.array(inputs["pixel_mask"]).shape, (3, 980, 980))
def test_apply_chat_template(self):
# Message contains content which a mix of lists with images and image urls and string
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "What do these images show?"},
{"type": "image"},
{"type": "image"},
"What do these images show?",
],
},
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "The first image shows the statue of Liberty in New York. The second image picture depicts Idefix, the dog of Obelix in Asterix and Obelix.",
}
],
},
{"role": "user", "content": [{"type": "text", "text": "And who is that?"}]},
]
processor = self.get_processor()
# Make short sequence length to test that the fake tokens are added correctly
rendered = processor.apply_chat_template(messages, add_generation_prompt=True)
print(rendered)
expected_rendered = """<|im_start|>user
What do these images show?<fim_prefix><|img|><fim_suffix><fim_prefix><|img|><fim_suffix><|im_end|>
<|im_start|>assistant
The first image shows the statue of Liberty in New York. The second image picture depicts Idefix, the dog of Obelix in Asterix and Obelix.<|im_end|>
<|im_start|>user
And who is that?<|im_end|>
<|im_start|>assistant
"""
self.assertEqual(rendered, expected_rendered)
# Override as AriaImageProcessor doesn't accept `do_rescale`
def test_image_chat_template_accepts_processing_kwargs(self):
processor = self.get_processor()
if processor.chat_template is None:
self.skipTest("Processor has no chat template")
messages = [
[
{
"role": "user",
"content": [
{"type": "text", "text": "What is shown in this image?"},
],
},
]
]
formatted_prompt_tokenized = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
padding="max_length",
max_length=50,
)
self.assertEqual(len(formatted_prompt_tokenized[0]), 50)
formatted_prompt_tokenized = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
truncation=True,
max_length=5,
)
self.assertEqual(len(formatted_prompt_tokenized[0]), 5)
# Now test the ability to return dict
messages[0][0]["content"].append(
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
)
out_dict = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
max_image_size=980,
return_tensors="np",
)
self.assertListEqual(list(out_dict[self.images_input_name].shape), [1, 3, 980, 980])
# Override as AriaProcessor needs image tokens in prompts
def prepare_text_inputs(self, batch_size: Optional[int] = None):
if batch_size is None:
return "lower newer <|img|>"
if batch_size < 1:
raise ValueError("batch_size must be greater than 0")
if batch_size == 1:
return ["lower newer <|img|>"]
return ["lower newer <|img|>", "<|img|> upper older longer string"] + ["<|img|> lower newer"] * (
batch_size - 2
)
# Override tests as inputs_ids padded dimension is the second one but not the last one
@require_vision
@require_torch
def test_kwargs_overrides_default_tokenizer_kwargs(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer", max_length=30)
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs()
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input, return_tensors="pt", max_length=30)
self.assertEqual(len(inputs["input_ids"][0]), 30)
@require_torch
@require_vision
def test_structured_kwargs_nested(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs()
image_input = self.prepare_image_inputs()
# Define the kwargs for each modality
inputs = processor(
text=input_str,
images=image_input,
common_kwargs={"return_tensors": "pt"},
images_kwargs={"max_image_size": 980},
text_kwargs={"padding": "max_length", "max_length": 120, "truncation": "longest_first"},
)
self.skip_processor_without_typed_kwargs(processor)
self.assertEqual(inputs["pixel_values"].shape[3], 980)
self.assertEqual(len(inputs["input_ids"][0]), 120)
@require_torch
@require_vision
def test_structured_kwargs_nested_from_dict(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs()
image_input = self.prepare_image_inputs()
# Define the kwargs for each modality
all_kwargs = {
"common_kwargs": {"return_tensors": "pt"},
"images_kwargs": {"max_image_size": 980},
"text_kwargs": {"padding": "max_length", "max_length": 120, "truncation": "longest_first"},
}
inputs = processor(text=input_str, images=image_input, **all_kwargs)
self.assertEqual(inputs["pixel_values"].shape[3], 980)
self.assertEqual(len(inputs["input_ids"][0]), 120)
@require_vision
@require_torch
def test_tokenizer_defaults_preserved_by_kwargs(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer", max_length=30)
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs()
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input, return_tensors="pt")
self.assertEqual(len(inputs["input_ids"][0]), 30)
@require_torch
@require_vision
def test_unstructured_kwargs_batched(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs(batch_size=2)
image_input = self.prepare_image_inputs(batch_size=2)
inputs = processor(
text=input_str,
images=image_input,
return_tensors="pt",
padding="longest",
max_length=76,
truncation=True,
max_image_size=980,
)
self.assertEqual(inputs["pixel_values"].shape[1], 3)
self.assertEqual(inputs["pixel_values"].shape[3], 980)
self.assertEqual(len(inputs["input_ids"][0]), 76)
@require_torch
@require_vision
def test_unstructured_kwargs(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs()
image_input = self.prepare_image_inputs()
inputs = processor(
text=input_str,
images=image_input,
return_tensors="pt",
max_image_size=980,
padding="max_length",
max_length=120,
truncation="longest_first",
)
self.assertEqual(inputs["pixel_values"].shape[3], 980)
self.assertEqual(len(inputs["input_ids"][0]), 120)