transformers/tests/agents/test_agents.py
cyyever 1e6b546ea6
Use Python 3.9 syntax in tests (#37343)
Signed-off-by: cyy <cyyever@outlook.com>
2025-04-08 14:12:08 +02:00

258 lines
8.4 KiB
Python

# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
import uuid
import pytest
from transformers.agents.agent_types import AgentText
from transformers.agents.agents import (
AgentMaxIterationsError,
CodeAgent,
ManagedAgent,
ReactCodeAgent,
ReactJsonAgent,
Toolbox,
)
from transformers.agents.default_tools import PythonInterpreterTool
from transformers.testing_utils import require_torch
def get_new_path(suffix="") -> str:
directory = tempfile.mkdtemp()
return os.path.join(directory, str(uuid.uuid4()) + suffix)
def fake_react_json_llm(messages, stop_sequences=None, grammar=None) -> str:
prompt = str(messages)
if "special_marker" not in prompt:
return """
Thought: I should multiply 2 by 3.6452. special_marker
Action:
{
"action": "python_interpreter",
"action_input": {"code": "2*3.6452"}
}
"""
else: # We're at step 2
return """
Thought: I can now answer the initial question
Action:
{
"action": "final_answer",
"action_input": {"answer": "7.2904"}
}
"""
def fake_react_code_llm(messages, stop_sequences=None, grammar=None) -> str:
prompt = str(messages)
if "special_marker" not in prompt:
return """
Thought: I should multiply 2 by 3.6452. special_marker
Code:
```py
result = 2**3.6452
```<end_code>
"""
else: # We're at step 2
return """
Thought: I can now answer the initial question
Code:
```py
final_answer(7.2904)
```<end_code>
"""
def fake_react_code_llm_error(messages, stop_sequences=None) -> str:
prompt = str(messages)
if "special_marker" not in prompt:
return """
Thought: I should multiply 2 by 3.6452. special_marker
Code:
```py
print = 2
```<end_code>
"""
else: # We're at step 2
return """
Thought: I can now answer the initial question
Code:
```py
final_answer("got an error")
```<end_code>
"""
def fake_react_code_functiondef(messages, stop_sequences=None) -> str:
prompt = str(messages)
if "special_marker" not in prompt:
return """
Thought: Let's define the function. special_marker
Code:
```py
import numpy as np
def moving_average(x, w):
return np.convolve(x, np.ones(w), 'valid') / w
```<end_code>
"""
else: # We're at step 2
return """
Thought: I can now answer the initial question
Code:
```py
x, w = [0, 1, 2, 3, 4, 5], 2
res = moving_average(x, w)
final_answer(res)
```<end_code>
"""
def fake_code_llm_oneshot(messages, stop_sequences=None, grammar=None) -> str:
return """
Thought: I should multiply 2 by 3.6452. special_marker
Code:
```py
result = python_interpreter(code="2*3.6452")
final_answer(result)
```
"""
def fake_code_llm_no_return(messages, stop_sequences=None, grammar=None) -> str:
return """
Thought: I should multiply 2 by 3.6452. special_marker
Code:
```py
result = python_interpreter(code="2*3.6452")
print(result)
```
"""
class AgentTests(unittest.TestCase):
def test_fake_code_agent(self):
agent = CodeAgent(tools=[PythonInterpreterTool()], llm_engine=fake_code_llm_oneshot)
output = agent.run("What is 2 multiplied by 3.6452?")
assert isinstance(output, str)
assert output == "7.2904"
def test_fake_react_json_agent(self):
agent = ReactJsonAgent(tools=[PythonInterpreterTool()], llm_engine=fake_react_json_llm)
output = agent.run("What is 2 multiplied by 3.6452?")
assert isinstance(output, str)
assert output == "7.2904"
assert agent.logs[0]["task"] == "What is 2 multiplied by 3.6452?"
assert agent.logs[1]["observation"] == "7.2904"
assert agent.logs[1]["rationale"].strip() == "Thought: I should multiply 2 by 3.6452. special_marker"
assert (
agent.logs[2]["llm_output"]
== """
Thought: I can now answer the initial question
Action:
{
"action": "final_answer",
"action_input": {"answer": "7.2904"}
}
"""
)
def test_fake_react_code_agent(self):
agent = ReactCodeAgent(tools=[PythonInterpreterTool()], llm_engine=fake_react_code_llm)
output = agent.run("What is 2 multiplied by 3.6452?")
assert isinstance(output, float)
assert output == 7.2904
assert agent.logs[0]["task"] == "What is 2 multiplied by 3.6452?"
assert agent.logs[2]["tool_call"] == {
"tool_arguments": "final_answer(7.2904)",
"tool_name": "code interpreter",
}
def test_react_code_agent_code_errors_show_offending_lines(self):
agent = ReactCodeAgent(tools=[PythonInterpreterTool()], llm_engine=fake_react_code_llm_error)
output = agent.run("What is 2 multiplied by 3.6452?")
assert isinstance(output, AgentText)
assert output == "got an error"
assert "Evaluation stopped at line 'print = 2' because of" in str(agent.logs)
def test_setup_agent_with_empty_toolbox(self):
ReactJsonAgent(llm_engine=fake_react_json_llm, tools=[])
def test_react_fails_max_iterations(self):
agent = ReactCodeAgent(
tools=[PythonInterpreterTool()],
llm_engine=fake_code_llm_no_return, # use this callable because it never ends
max_iterations=5,
)
agent.run("What is 2 multiplied by 3.6452?")
assert len(agent.logs) == 7
assert type(agent.logs[-1]["error"]) is AgentMaxIterationsError
@require_torch
def test_init_agent_with_different_toolsets(self):
toolset_1 = []
agent = ReactCodeAgent(tools=toolset_1, llm_engine=fake_react_code_llm)
assert (
len(agent.toolbox.tools) == 1
) # when no tools are provided, only the final_answer tool is added by default
toolset_2 = [PythonInterpreterTool(), PythonInterpreterTool()]
agent = ReactCodeAgent(tools=toolset_2, llm_engine=fake_react_code_llm)
assert (
len(agent.toolbox.tools) == 2
) # deduplication of tools, so only one python_interpreter tool is added in addition to final_answer
toolset_3 = Toolbox(toolset_2)
agent = ReactCodeAgent(tools=toolset_3, llm_engine=fake_react_code_llm)
assert (
len(agent.toolbox.tools) == 2
) # same as previous one, where toolset_3 is an instantiation of previous one
# check that add_base_tools will not interfere with existing tools
with pytest.raises(KeyError) as e:
agent = ReactJsonAgent(tools=toolset_3, llm_engine=fake_react_json_llm, add_base_tools=True)
assert "already exists in the toolbox" in str(e)
# check that python_interpreter base tool does not get added to code agents
agent = ReactCodeAgent(tools=[], llm_engine=fake_react_code_llm, add_base_tools=True)
assert len(agent.toolbox.tools) == 7 # added final_answer tool + 6 base tools (excluding interpreter)
def test_function_persistence_across_steps(self):
agent = ReactCodeAgent(
tools=[], llm_engine=fake_react_code_functiondef, max_iterations=2, additional_authorized_imports=["numpy"]
)
res = agent.run("ok")
assert res[0] == 0.5
def test_init_managed_agent(self):
agent = ReactCodeAgent(tools=[], llm_engine=fake_react_code_functiondef)
managed_agent = ManagedAgent(agent, name="managed_agent", description="Empty")
assert managed_agent.name == "managed_agent"
assert managed_agent.description == "Empty"
def test_agent_description_gets_correctly_inserted_in_system_prompt(self):
agent = ReactCodeAgent(tools=[], llm_engine=fake_react_code_functiondef)
managed_agent = ManagedAgent(agent, name="managed_agent", description="Empty")
manager_agent = ReactCodeAgent(
tools=[], llm_engine=fake_react_code_functiondef, managed_agents=[managed_agent]
)
assert "You can also give requests to team members." not in agent.system_prompt
assert "<<managed_agents_descriptions>>" not in agent.system_prompt
assert "You can also give requests to team members." in manager_agent.system_prompt