transformers/examples/research_projects/codeparrot/scripts/human_eval.py

127 lines
4.7 KiB
Python

import json
import multiprocessing
import os
import re
from datasets import load_dataset, load_metric
from tqdm import tqdm
import transformers
from arguments import HumanEvalArguments
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
HfArgumentParser,
StoppingCriteria,
StoppingCriteriaList,
pipeline,
set_seed,
)
EOF_STRINGS = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"]
class EndOfFunctionCriteria(StoppingCriteria):
"""Custom `StoppingCriteria` which checks if all generated functions in the batch are completed."""
def __init__(self, start_length, eof_strings, tokenizer):
self.start_length = start_length
self.eof_strings = eof_strings
self.tokenizer = tokenizer
def __call__(self, input_ids, scores, **kwargs):
"""Returns true if all generated sequences contain any of the end-of-function strings."""
decoded_generations = self.tokenizer.batch_decode(input_ids[:, self.start_length :])
done = []
for decoded_generation in decoded_generations:
done.append(any([stop_string in decoded_generation for stop_string in self.eof_strings]))
return all(done)
def first_block(string):
"""Split off first block of code by scanning for class, def etc. on newlines."""
return re.split("|".join(EOF_STRINGS), string)[0].rstrip()
def complete_code(pipe, prompt, num_completions=1, **gen_kwargs):
"""Complete prompt with text generation pipeline and return num_completions."""
prompt = pipe.tokenizer.eos_token + prompt
code_gens = pipe(prompt, num_return_sequences=num_completions, **gen_kwargs)
return [first_block(code_gen["generated_text"][len(prompt) :]) for code_gen in code_gens]
def main():
# Setup configuration
parser = HfArgumentParser(HumanEvalArguments)
args = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
os.environ["HF_ALLOW_CODE_EVAL"] = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if args.num_workers is None:
args.num_workers = multiprocessing.cpu_count()
set_seed(args.seed)
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.model_ckpt)
model = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=args.device_int)
# Generation settings
gen_kwargs = {
"do_sample": args.do_sample,
"temperature": args.temperature,
"max_new_tokens": args.max_new_tokens,
"top_p": args.top_p,
"top_k": args.top_k,
"stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0, EOF_STRINGS, tokenizer)]),
}
# Load evaluation dataset and metric
human_eval = load_dataset("openai_humaneval")
code_eval_metric = load_metric("code_eval")
# Run a quick test to see if code evaluation is enabled
try:
_ = code_eval_metric.compute(references=[""], predictions=[[""]])
except ValueError as exception:
print(
'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"` flag to enable code evaluation.'
)
raise exception
# Generate completions for evaluation set
n_tasks = args.num_tasks if args.num_tasks is not None else len(human_eval["test"])
generations, references = [], []
for task in tqdm(range(n_tasks)):
task_generations = []
prompt = human_eval["test"][task]["prompt"].strip()
gen_kwargs["stopping_criteria"][0].start_length = len(tokenizer(prompt)["input_ids"])
for batch in range(args.n_samples // args.batch_size):
task_generations.extend(complete_code(pipe, prompt, num_completions=args.batch_size, **gen_kwargs))
generations.append([prompt + gen for gen in task_generations])
test_func = human_eval["test"][task]["test"]
entry_point = f"check({human_eval['test'][task]['entry_point']})"
references.append("\n" + test_func + "\n" + entry_point)
# Evaluate completions with "code_eval" metric
pass_at_k, _ = code_eval_metric.compute(
references=references, predictions=generations, num_workers=args.num_workers
)
print(f"Results: {pass_at_k}")
# Save results to json file
with open(args.output_file, "w") as fp:
json.dump(pass_at_k, fp)
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()