transformers/src/transformers/models/groupvit/modeling_tf_groupvit.py
cyy 1d5fd195df Use newer typing notation
Signed-off-by: cyy <cyyever@outlook.com>
2025-06-20 17:20:44 +08:00

2142 lines
88 KiB
Python

# coding=utf-8
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 GroupViT model."""
from __future__ import annotations
import collections.abc
import math
from dataclasses import dataclass
from typing import Any
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling
from ...modeling_tf_utils import (
TFModelInputType,
TFPreTrainedModel,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_tensorflow_probability_available,
logging,
replace_return_docstrings,
)
from .configuration_groupvit import GroupViTConfig, GroupViTTextConfig, GroupViTVisionConfig
logger = logging.get_logger(__name__)
# soft dependency
if is_tensorflow_probability_available():
try:
import tensorflow_probability as tfp
# On the first call, check whether a compatible version of TensorFlow is installed
# TensorFlow Probability depends on a recent stable release of TensorFlow
_ = tfp.distributions.Normal(loc=0.0, scale=1.0)
except ImportError:
logger.error(
"GroupViT models are not usable since `tensorflow_probability` can't be loaded. "
"It seems you have `tensorflow_probability` installed with the wrong tensorflow version."
"Please try to reinstall it following the instructions here: https://github.com/tensorflow/probability."
)
else:
try:
import tensorflow_probability as tfp
# On the first call, check whether a compatible version of TensorFlow is installed
# TensorFlow Probability depends on a recent stable release of TensorFlow
_ = tfp.distributions.Normal(loc=0.0, scale=1.0)
except ImportError:
pass
_CHECKPOINT_FOR_DOC = "nvidia/groupvit-gcc-yfcc"
LARGE_NEGATIVE = -1e8
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: int | None = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
# contrastive loss function, adapted from
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
def contrastive_loss(logits: tf.Tensor) -> tf.Tensor:
return tf.math.reduce_mean(
keras.metrics.sparse_categorical_crossentropy(
y_true=tf.range(shape_list(logits)[0]), y_pred=logits, from_logits=True
)
)
# Copied from transformers.models.clip.modeling_tf_clip.clip_loss with clip->groupvit
def groupvit_loss(similarity: tf.Tensor) -> tf.Tensor:
caption_loss = contrastive_loss(similarity)
image_loss = contrastive_loss(tf.transpose(similarity))
return (caption_loss + image_loss) / 2.0
def hard_softmax(logits: tf.Tensor, dim: int) -> tf.Tensor:
y_soft = stable_softmax(logits, dim)
# Straight through.
index = tf.argmax(y_soft, dim)
y_hard = tf.one_hot(
index,
depth=shape_list(logits)[dim],
# TensorFlow expects axis to be -1 or between [0, 3). But received: -2
# This is why the following code snippet is used.
axis=range(len(shape_list(logits)))[dim],
dtype=y_soft.dtype,
)
ret = y_hard - tf.stop_gradient(y_soft) + y_soft
return ret
def gumbel_softmax(logits: tf.Tensor, tau: float = 1, hard: bool = False, dim: int = -1) -> tf.Tensor:
gumbel_dist = tfp.distributions.Gumbel(0.0, 1.0)
gumbels = gumbel_dist.sample(tf.shape(logits), dtype=logits.dtype)
gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau)
y_soft = stable_softmax(gumbels, dim)
if hard:
# Straight through.
index = tf.argmax(y_soft, dim)
y_hard = tf.one_hot(
index,
depth=shape_list(logits)[dim],
# TensorFlow expects axis to be -1 or between [0, 3). But received: -2
# This is why the following code snippet is used.
axis=range(len(shape_list(logits)))[dim],
dtype=y_soft.dtype,
)
ret = y_hard - tf.stop_gradient(y_soft) + y_soft
else:
# Reparametrization trick.
ret = y_soft
return ret
def resize_attention_map(attentions: tf.Tensor, height: int, width: int, align_corners: bool = False) -> tf.Tensor:
"""
Args:
attentions (`tf.Tensor`): attention map of shape [batch_size, groups, feat_height*feat_width]
height (`int`): height of the output attention map
width (`int`): width of the output attention map
align_corners (`bool`, *optional*): the `align_corner` argument for `nn.functional.interpolate`.
Returns:
`tf.Tensor`: resized attention map of shape [batch_size, groups, height, width]
"""
scale = (height * width // attentions.shape[2]) ** 0.5
if height > width:
feat_width = int(np.round(width / scale))
feat_height = shape_list(attentions)[2] // feat_width
else:
feat_height = int(np.round(height / scale))
feat_width = shape_list(attentions)[2] // feat_height
batch_size = shape_list(attentions)[0]
groups = shape_list(attentions)[1] # number of group token
# [batch_size, groups, height x width, groups] -> [batch_size, groups, height, width]
attentions = tf.reshape(attentions, (batch_size, groups, feat_height, feat_width))
attentions = tf.transpose(attentions, perm=(0, 2, 3, 1))
if align_corners:
attentions = tf.compat.v1.image.resize(
attentions,
size=(height, width),
method="bilinear",
align_corners=align_corners,
)
else:
attentions = tf.image.resize(attentions, size=(height, width), method="bilinear")
attentions = tf.transpose(attentions, perm=(0, 3, 1, 2))
return attentions
def get_grouping_from_attentions(attentions: tuple[tf.Tensor], hw_shape: tuple[int]) -> tf.Tensor:
"""
Args:
attentions (`tuple(tf.Tensor)`: tuple of attention maps returned by `TFGroupViTVisionTransformer`
hw_shape (`tuple(int)`): height and width of the output attention map
Returns:
`tf.Tensor`: the attention map of shape [batch_size, groups, height, width]
"""
attn_maps = []
prev_attn_masks = None
for attn_masks in attentions:
# [batch_size, num_groups, height x width] -> [batch_size, height x width, num_groups]
attn_masks = tf.transpose(attn_masks, perm=(0, 2, 1))
if prev_attn_masks is None:
prev_attn_masks = attn_masks
else:
prev_attn_masks = tf.matmul(prev_attn_masks, attn_masks)
# [batch_size, height x width, num_groups] -> [batch_size, num_groups, height x width] -> [batch_size, num_groups, height, width]
cur_attn_map = resize_attention_map(tf.transpose(prev_attn_masks, perm=(0, 2, 1)), *hw_shape)
attn_maps.append(cur_attn_map)
# [batch_size, num_groups, height, width]
final_grouping = attn_maps[-1]
return tf.stop_gradient(final_grouping)
@dataclass
class TFGroupViTModelOutput(ModelOutput):
"""
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image (`tf.Tensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text (`tf.Tensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
segmentation_logits (`tf.Tensor` of shape `(batch_size, config.num_labels, logits_height, logits_width)`):
Classification scores for each pixel.
<Tip warning={true}>
The logits returned do not necessarily have the same size as the `pixel_values` passed as inputs. This is
to avoid doing two interpolations and lose some quality when a user needs to resize the logits to the
original image size as post-processing. You should always check your logits shape and resize as needed.
</Tip>
text_embeds (`tf.Tensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of
[`TFGroupViTTextModel`].
image_embeds (`tf.Tensor` of shape `(batch_size, output_dim`):
The image embeddings obtained by applying the projection layer to the pooled output of
[`TFGroupViTVisionModel`].
text_model_output (`TFBaseModelOutputWithPooling`):
The output of the [`TFGroupViTTextModel`].
vision_model_output (`TFBaseModelOutputWithPooling`):
The output of the [`TFGroupViTVisionModel`].
"""
loss: tf.Tensor | None = None
logits_per_image: tf.Tensor | None = None
logits_per_text: tf.Tensor | None = None
segmentation_logits: tf.Tensor | None = None
text_embeds: tf.Tensor | None = None
image_embeds: tf.Tensor | None = None
text_model_output: TFBaseModelOutputWithPooling = None
vision_model_output: TFBaseModelOutputWithPooling = None
def to_tuple(self) -> tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
class TFGroupViTCrossAttentionLayer(keras.layers.Layer):
def __init__(self, config: GroupViTVisionConfig, **kwargs):
super().__init__(**kwargs)
self.attn = TFGroupViTAttention(config, name="attn")
self.norm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm2")
self.mlp = TFGroupViTMLP(config, name="mlp")
self.norm_post = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_post")
self.config = config
def call(self, query: tf.Tensor, key: tf.Tensor, training: bool = False) -> tf.Tensor:
x = query
x = x + self.attn(query, encoder_hidden_states=key)[0]
x = x + self.mlp(self.norm2(x))
x = self.norm_post(x)
return x
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attn", None) is not None:
with tf.name_scope(self.attn.name):
self.attn.build(None)
if getattr(self, "norm2", None) is not None:
with tf.name_scope(self.norm2.name):
self.norm2.build([None, None, self.config.hidden_size])
if getattr(self, "mlp", None) is not None:
with tf.name_scope(self.mlp.name):
self.mlp.build(None)
if getattr(self, "norm_post", None) is not None:
with tf.name_scope(self.norm_post.name):
self.norm_post.build([None, None, self.config.hidden_size])
class TFGroupViTAssignAttention(keras.layers.Layer):
def __init__(self, config: GroupViTVisionConfig, **kwargs):
super().__init__(**kwargs)
self.scale = config.hidden_size**-0.5
self.q_proj = keras.layers.Dense(config.hidden_size, name="q_proj")
self.k_proj = keras.layers.Dense(config.hidden_size, name="k_proj")
self.v_proj = keras.layers.Dense(config.hidden_size, name="v_proj")
self.proj = keras.layers.Dense(config.hidden_size, name="proj")
self.assign_eps = config.assign_eps
self.config = config
def get_attn(self, attn: tf.Tensor, gumbel: bool = True, hard: bool = True, training: bool = False) -> tf.Tensor:
if gumbel and training:
attn = gumbel_softmax(attn, dim=-2, hard=hard)
else:
if hard:
attn = hard_softmax(attn, dim=-2)
else:
attn = stable_softmax(attn, axis=-2)
return attn
def call(self, query: tf.Tensor, key: tf.Tensor, training: bool = False):
value = key
# [batch_size, query_length, channels]
query = self.q_proj(query)
# [batch_size, key_length, channels]
key = self.k_proj(key)
# [batch_size, key_length, channels]
value = self.v_proj(value)
# [batch_size, query_length, key_length]
raw_attn = tf.matmul(query, key, transpose_b=True) * self.scale
attn = self.get_attn(raw_attn, training=training)
soft_attn = self.get_attn(raw_attn, training=training, gumbel=False, hard=False)
attn = attn / (tf.math.reduce_sum(attn, axis=-1, keepdims=True) + self.assign_eps)
out = tf.matmul(attn, value)
out = self.proj(out)
return out, soft_attn
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "q_proj", None) is not None:
with tf.name_scope(self.q_proj.name):
self.q_proj.build([None, None, self.config.hidden_size])
if getattr(self, "k_proj", None) is not None:
with tf.name_scope(self.k_proj.name):
self.k_proj.build([None, None, self.config.hidden_size])
if getattr(self, "v_proj", None) is not None:
with tf.name_scope(self.v_proj.name):
self.v_proj.build([None, None, self.config.hidden_size])
if getattr(self, "proj", None) is not None:
with tf.name_scope(self.proj.name):
self.proj.build([None, None, self.config.hidden_size])
class TFGroupViTTokenAssign(keras.layers.Layer):
def __init__(self, config: GroupViTVisionConfig, num_group_token: int, num_output_group: int, **kwargs):
super().__init__(**kwargs)
self.num_output_group = num_output_group
# norm on group_tokens
self.norm_tokens = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_tokens")
assign_mlp_ratio = (
config.assign_mlp_ratio
if isinstance(config.assign_mlp_ratio, collections.abc.Iterable)
else (config.assign_mlp_ratio, config.assign_mlp_ratio)
)
tokens_dim, channels_dim = [int(x * config.hidden_size) for x in assign_mlp_ratio]
self.mlp_inter = TFGroupViTMixerMLP(config, num_group_token, tokens_dim, num_output_group, name="mlp_inter")
self.norm_post_tokens = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_post_tokens")
# norm on x
self.norm_x = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_x")
self.pre_assign_attn = TFGroupViTCrossAttentionLayer(config, name="pre_assign_attn")
self.assign = TFGroupViTAssignAttention(config, name="assign")
self.norm_new_x = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="norm_new_x")
self.mlp_channels = TFGroupViTMLP(
config, config.hidden_size, channels_dim, config.hidden_size, name="mlp_channels"
)
self.config = config
def project_group_token(self, group_tokens: tf.Tensor) -> tf.Tensor:
"""
Args:
group_tokens (tf.Tensor): group tokens, [batch_size, num_group_tokens, channels]
Returns:
projected_group_tokens (tf.Tensor): [batch_size, num_output_groups, channels]
"""
# [B, num_output_groups, C] <- [B, num_group_tokens, C]
projected_group_tokens = self.mlp_inter(group_tokens)
projected_group_tokens = self.norm_post_tokens(projected_group_tokens)
return projected_group_tokens
def call(self, image_tokens: tf.Tensor, group_tokens: tf.Tensor, training: bool = False):
"""
Args:
image_tokens (`tf.Tensor`): image tokens, of shape [batch_size, input_length, channels]
group_tokens (`tf.Tensor`): group tokens, [batch_size, num_group_tokens, channels]
"""
group_tokens = self.norm_tokens(group_tokens)
image_tokens = self.norm_x(image_tokens)
# [batch_size, num_output_groups, channels]
projected_group_tokens = self.project_group_token(group_tokens)
projected_group_tokens = self.pre_assign_attn(projected_group_tokens, image_tokens)
new_image_tokens, attention = self.assign(projected_group_tokens, image_tokens)
new_image_tokens += projected_group_tokens
new_image_tokens = new_image_tokens + self.mlp_channels(self.norm_new_x(new_image_tokens))
return new_image_tokens, attention
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "norm_tokens", None) is not None:
with tf.name_scope(self.norm_tokens.name):
self.norm_tokens.build([None, None, self.config.hidden_size])
if getattr(self, "mlp_inter", None) is not None:
with tf.name_scope(self.mlp_inter.name):
self.mlp_inter.build(None)
if getattr(self, "norm_post_tokens", None) is not None:
with tf.name_scope(self.norm_post_tokens.name):
self.norm_post_tokens.build([None, None, self.config.hidden_size])
if getattr(self, "norm_x", None) is not None:
with tf.name_scope(self.norm_x.name):
self.norm_x.build([None, None, self.config.hidden_size])
if getattr(self, "pre_assign_attn", None) is not None:
with tf.name_scope(self.pre_assign_attn.name):
self.pre_assign_attn.build(None)
if getattr(self, "assign", None) is not None:
with tf.name_scope(self.assign.name):
self.assign.build(None)
if getattr(self, "norm_new_x", None) is not None:
with tf.name_scope(self.norm_new_x.name):
self.norm_new_x.build([None, None, self.config.hidden_size])
if getattr(self, "mlp_channels", None) is not None:
with tf.name_scope(self.mlp_channels.name):
self.mlp_channels.build(None)
# Adapted from transformers.models.vit.modeling_tf_vit.TFViTPatchEmbeddings with ViT->GroupViT
class TFGroupViTPatchEmbeddings(keras.layers.Layer):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config: GroupViTConfig, **kwargs):
super().__init__(**kwargs)
image_size, patch_size = config.image_size, config.patch_size
num_channels = config.num_channels
# hidden_size is a member as it will be required in the call method
self.hidden_size = config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = num_patches
self.num_channels = num_channels
self.config = config
self.projection = keras.layers.Conv2D(
filters=self.hidden_size,
kernel_size=patch_size,
strides=patch_size,
padding="valid",
data_format="channels_last",
use_bias=True,
kernel_initializer=get_initializer(self.config.initializer_range),
bias_initializer="zeros",
name="projection",
)
def call(
self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False
) -> tf.Tensor:
batch_size, num_channels, height, width = shape_list(pixel_values)
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
if (
not interpolate_pos_encoding
and tf.executing_eagerly()
and (height != self.image_size[0] or width != self.image_size[1])
):
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
)
# When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
projection = self.projection(pixel_values)
# Change the 2D spatial dimensions to a single temporal dimension.
# shape = (batch_size, num_patches, out_channels=embed_dim)
num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0])
# In the TFGroupViTVisionEmbeddings the embeddings from this layer will be layer normalized
# LayerNormalization layer needs to have static last dimension (otherwise the test_keras_save_load fails with symbolic tensors)
# This is why we have used the hidden_size in the reshape method
embeddings = tf.reshape(tensor=projection, shape=(batch_size, num_patches, self.hidden_size))
return embeddings
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "projection", None) is not None:
with tf.name_scope(self.projection.name):
self.projection.build([None, None, None, self.num_channels])
# Adapted from transformers.vit.modeling_tf_vit.TFViTEmbeddings
class TFGroupViTVisionEmbeddings(keras.layers.Layer):
"""
Construct the position and patch embeddings.
"""
def __init__(self, config: GroupViTVisionConfig, **kwargs):
super().__init__(**kwargs)
self.patch_embeddings = TFGroupViTPatchEmbeddings(config, name="patch_embeddings")
self.dropout = keras.layers.Dropout(rate=config.dropout, name="dropout")
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
self.config = config
def build(self, input_shape=None):
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = self.add_weight(
shape=(1, num_patches, self.config.hidden_size),
initializer="zeros",
trainable=True,
name="position_embeddings",
)
if self.built:
return
self.built = True
if getattr(self, "patch_embeddings", None) is not None:
with tf.name_scope(self.patch_embeddings.name):
self.patch_embeddings.build(None)
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, self.config.hidden_size])
def interpolate_pos_encoding(self, embeddings, height, width) -> tf.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
batch_size, num_patches, dim = shape_list(embeddings)
num_positions = shape_list(self.position_embeddings)[1]
if num_patches == num_positions and height == width:
return self.position_embeddings
patch_pos_embed = self.position_embeddings
h0 = height // self.config.patch_size
w0 = width // self.config.patch_size
patch_pos_embed = tf.image.resize(
images=tf.reshape(
patch_pos_embed, shape=(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
),
size=(h0, w0),
method="bicubic",
)
patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim))
return patch_pos_embed
def call(
self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False
) -> tf.Tensor:
_, _, height, width = shape_list(pixel_values)
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
embeddings = self.layernorm(embeddings)
# add positional encoding to each token
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings
# Copied from transformers.models.clip.modeling_tf_clip.TFCLIPTextEmbeddings with CLIP->GroupViT
class TFGroupViTTextEmbeddings(keras.layers.Layer):
def __init__(self, config: GroupViTTextConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.hidden_size
self.config = config
def build(self, input_shape: tf.TensorShape = None):
with tf.name_scope("token_embedding"):
self.weight = self.add_weight(
shape=(self.config.vocab_size, self.embed_dim),
initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
trainable=True,
name="weight",
)
with tf.name_scope("position_embedding"):
self.position_embedding = self.add_weight(
shape=(self.config.max_position_embeddings, self.embed_dim),
initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
trainable=True,
name="embeddings",
)
super().build(input_shape)
def call(
self,
input_ids: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
) -> tf.Tensor:
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
if input_ids is None and inputs_embeds is None:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
input_shape = shape_list(inputs_embeds)[:-1]
if position_ids is None:
position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
position_embeds = tf.gather(params=self.position_embedding, indices=position_ids)
position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1))
final_embeddings = inputs_embeds + position_embeds
return final_embeddings
class TFGroupViTStage(keras.layers.Layer):
"""This corresponds to the `GroupingLayer` class in the GroupViT implementation."""
def __init__(
self,
config: GroupViTVisionConfig,
depth: int,
num_prev_group_token: int,
num_group_token: int,
num_output_group: int,
**kwargs,
):
super().__init__(**kwargs)
self.config = config
self.depth = depth
self.num_group_token = num_group_token
self.layers = [TFGroupViTEncoderLayer(config, name=f"layers_._{i}") for i in range(depth)]
if num_group_token > 0:
self.downsample = TFGroupViTTokenAssign(
config=config,
num_group_token=num_group_token,
num_output_group=num_output_group,
name="downsample",
)
else:
self.downsample = None
if num_prev_group_token > 0 and num_group_token > 0:
self.group_projector = [
keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="group_projector.0"),
TFGroupViTMixerMLP(
config, num_prev_group_token, config.hidden_size // 2, num_group_token, name="group_projector.1"
),
]
else:
self.group_projector = None
def build(self, input_shape=None):
if self.num_group_token > 0:
self.group_token = self.add_weight(
shape=(1, self.num_group_token, self.config.hidden_size),
initializer="zeros",
trainable=True,
name="group_token",
)
else:
self.group_token = None
if self.built:
return
self.built = True
if getattr(self, "downsample", None) is not None:
with tf.name_scope(self.downsample.name):
self.downsample.build(None)
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
if getattr(self, "group_projector", None) is not None:
with tf.name_scope(self.group_projector[0].name):
self.group_projector[0].build([None, None, self.config.hidden_size])
with tf.name_scope(self.group_projector[1].name):
self.group_projector[1].build(None)
@property
def with_group_token(self):
return self.group_token is not None
def split_x(self, x: tf.Tensor) -> tf.Tensor:
if self.with_group_token:
return x[:, : -self.num_group_token], x[:, -self.num_group_token :]
else:
return x, None
def concat_x(self, x: tf.Tensor, group_token: tf.Tensor | None = None) -> tf.Tensor:
if group_token is None:
return x
return tf.concat([x, group_token], axis=1)
def call(
self,
hidden_states: tf.Tensor,
prev_group_token: tf.Tensor | None = None,
output_attentions: bool = False,
training: bool = False,
) -> tuple[tf.Tensor]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the grouping tensors of Grouping block.
"""
if self.with_group_token:
group_token = tf.tile(self.group_token, multiples=(shape_list(hidden_states)[0], 1, 1))
if self.group_projector is not None:
for layer in self.group_projector:
prev_group_token = layer(prev_group_token)
group_token = group_token + prev_group_token
else:
group_token = None
x = hidden_states
cat_x = self.concat_x(x, group_token)
for layer in self.layers:
layer_out = layer(
cat_x,
attention_mask=None,
causal_attention_mask=None,
output_attentions=None,
)
cat_x = layer_out[0]
x, group_token = self.split_x(cat_x)
attention = None
if self.downsample is not None:
x, attention = self.downsample(x, group_token)
outputs = (x, group_token)
if output_attentions:
outputs = outputs + (attention,)
return outputs
class TFGroupViTMLP(keras.layers.Layer):
def __init__(
self,
config: GroupViTVisionConfig,
hidden_size: int | None = None,
intermediate_size: int | None = None,
output_size: int | None = None,
**kwargs,
):
super().__init__(**kwargs)
self.config = config
self.activation_fn = get_tf_activation(config.hidden_act)
hidden_size = hidden_size if hidden_size is not None else config.hidden_size
intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size
output_size = output_size if output_size is not None else hidden_size
self.fc1 = keras.layers.Dense(intermediate_size, name="fc1")
self.fc2 = keras.layers.Dense(output_size, name="fc2")
self.intermediate_size = intermediate_size
self.hidden_size = hidden_size
def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "fc1", None) is not None:
with tf.name_scope(self.fc1.name):
self.fc1.build([None, None, self.hidden_size])
if getattr(self, "fc2", None) is not None:
with tf.name_scope(self.fc2.name):
self.fc2.build([None, None, self.intermediate_size])
class TFGroupViTMixerMLP(TFGroupViTMLP):
def call(self, x, training: bool = False):
x = super().call(hidden_states=tf.transpose(x, perm=(0, 2, 1)))
return tf.transpose(x, perm=(0, 2, 1))
# Adapted from transformers.models.clip.modeling_tf_clip.TFCLIPAttention
class TFGroupViTAttention(keras.layers.Layer):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: GroupViTConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.hidden_size
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = self.embed_dim // self.num_attention_heads
if self.attention_head_size * self.num_attention_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_attention_heads})."
)
factor = config.initializer_factor
in_proj_std = (self.embed_dim**-0.5) * ((2 * config.num_hidden_layers) ** -0.5) * factor
out_proj_std = (self.embed_dim**-0.5) * factor
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
self.q_proj = keras.layers.Dense(
units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="q_proj"
)
self.k_proj = keras.layers.Dense(
units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="k_proj"
)
self.v_proj = keras.layers.Dense(
units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="v_proj"
)
self.dropout = keras.layers.Dropout(rate=config.attention_dropout)
self.out_proj = keras.layers.Dense(
units=self.embed_dim, kernel_initializer=get_initializer(out_proj_std), name="out_proj"
)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention.transpose_for_scores
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
causal_attention_mask: tf.Tensor | None = None,
output_attentions: bool | None = None,
encoder_hidden_states: tf.Tensor | None = None,
training: bool = False,
) -> tuple[tf.Tensor]:
"""Input shape: Batch x Time x Channel"""
batch_size = shape_list(hidden_states)[0]
is_cross_attention = encoder_hidden_states is not None
mixed_query_layer = self.q_proj(inputs=hidden_states)
if is_cross_attention:
mixed_key_layer = self.k_proj(inputs=encoder_hidden_states)
mixed_value_layer = self.v_proj(inputs=encoder_hidden_states)
else:
mixed_key_layer = self.k_proj(inputs=hidden_states)
mixed_value_layer = self.v_proj(inputs=hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
# Take the dot product between "query" and "key" to get the raw attention scores.
# (batch size, num_heads, seq_len_q, seq_len_k)
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
attention_scores = tf.divide(attention_scores, dk)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
# Apply the causal attention mask (precomputed for all layers in TFCLIPModel call() function)
attention_scores = tf.add(attention_scores, causal_attention_mask)
if attention_mask is not None:
# Apply the attention mask (precomputed for all layers in TFCLIPModel call() function)
attention_scores = tf.add(attention_scores, attention_mask)
# Normalize the attention scores to probabilities.
_attention_probs = stable_softmax(logits=attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(inputs=_attention_probs)
attention_output = tf.matmul(attention_probs, value_layer)
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
# (batch_size, seq_len_q, embed_dim)
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.embed_dim))
attention_output = self.out_proj(attention_output)
# In TFBert, attention weights are returned after dropout.
# However, in CLIP, they are returned before dropout.
outputs = (attention_output, _attention_probs) if output_attentions else (attention_output,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "q_proj", None) is not None:
with tf.name_scope(self.q_proj.name):
self.q_proj.build([None, None, self.embed_dim])
if getattr(self, "k_proj", None) is not None:
with tf.name_scope(self.k_proj.name):
self.k_proj.build([None, None, self.embed_dim])
if getattr(self, "v_proj", None) is not None:
with tf.name_scope(self.v_proj.name):
self.v_proj.build([None, None, self.embed_dim])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.embed_dim])
# Copied from transformers.models.clip.modeling_tf_clip.TFCLIPEncoderLayer with CLIP->GroupViT
class TFGroupViTEncoderLayer(keras.layers.Layer):
def __init__(self, config: GroupViTConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.hidden_size
self.self_attn = TFGroupViTAttention(config, name="self_attn")
self.layer_norm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1")
self.mlp = TFGroupViTMLP(config, name="mlp")
self.layer_norm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2")
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
causal_attention_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> tuple[tf.Tensor]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
causal_attention_mask (`tf.Tensor`): causal attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`):
Whether or not to return the attentions tensors of all attention layers. See `outputs` under returned
tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(inputs=hidden_states)
attention_outputs = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
training=training,
)
hidden_states = attention_outputs[0]
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(inputs=hidden_states)
hidden_states = self.mlp(hidden_states=hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,) + attention_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attn", None) is not None:
with tf.name_scope(self.self_attn.name):
self.self_attn.build(None)
if getattr(self, "layer_norm1", None) is not None:
with tf.name_scope(self.layer_norm1.name):
self.layer_norm1.build([None, None, self.embed_dim])
if getattr(self, "mlp", None) is not None:
with tf.name_scope(self.mlp.name):
self.mlp.build(None)
if getattr(self, "layer_norm2", None) is not None:
with tf.name_scope(self.layer_norm2.name):
self.layer_norm2.build([None, None, self.embed_dim])
# Adapted from transformers.models.clip.modeling_tf_clip.TFGroupViTTextEncoder
class TFGroupViTTextEncoder(keras.layers.Layer):
def __init__(self, config: GroupViTTextConfig, **kwargs):
super().__init__(**kwargs)
self.layers = [TFGroupViTEncoderLayer(config, name=f"layers_._{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states,
attention_mask: tf.Tensor,
causal_attention_mask: tf.Tensor,
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> tuple | TFBaseModelOutput:
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
class TFGroupViTVisionEncoder(keras.layers.Layer):
def __init__(self, config: GroupViTVisionConfig, **kwargs) -> None:
super().__init__(**kwargs)
self.stages = [
TFGroupViTStage(
config=config,
depth=config.depths[i],
num_group_token=config.num_group_tokens[i],
num_output_group=config.num_output_groups[i],
num_prev_group_token=config.num_output_groups[i - 1] if i > 0 else 0,
name=f"stages_._{i}",
)
for i in range(len(config.depths))
]
def call(
self,
hidden_states: tf.Tensor,
output_hidden_states: bool,
output_attentions: bool,
return_dict: bool,
training: bool = False,
) -> tuple | TFBaseModelOutput:
all_hidden_states = () if output_hidden_states else None
all_groupings = () if output_attentions else None
group_tokens = None
for stage in self.stages:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = stage(hidden_states, group_tokens, output_attentions)
hidden_states = layer_outputs[0]
group_tokens = layer_outputs[1]
if output_attentions and layer_outputs[2] is not None:
all_groupings = all_groupings + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_groupings] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_groupings
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "stages", None) is not None:
for layer in self.stages:
with tf.name_scope(layer.name):
layer.build(None)
# Copied from transformers.models.clip.modeling_tf_clip.TFCLIPTextTransformer with CLIPText->GroupViTText, CLIPEncoder->GroupViTTextEncoder
class TFGroupViTTextTransformer(keras.layers.Layer):
def __init__(self, config: GroupViTTextConfig, **kwargs):
super().__init__(**kwargs)
self.embeddings = TFGroupViTTextEmbeddings(config, name="embeddings")
self.encoder = TFGroupViTTextEncoder(config, name="encoder")
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="final_layer_norm")
# For `pooled_output` computation
self.eos_token_id = config.eos_token_id
self.embed_dim = config.hidden_size
def call(
self,
input_ids: TFModelInputType,
attention_mask: tf.Tensor,
position_ids: tf.Tensor,
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> TFBaseModelOutputWithPooling | tuple[tf.Tensor]:
input_shape = shape_list(input_ids)
embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids)
batch_size, seq_length = input_shape
# CLIP's text model uses causal mask, prepare it here.
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
causal_attention_mask = self._build_causal_attention_mask(batch_size, seq_length, dtype=embedding_output.dtype)
# check attention mask and invert
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask)
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
sequence_output = self.final_layer_norm(inputs=sequence_output)
if self.eos_token_id == 2:
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
# A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
# ------------------------------------------------------------
# text_embeds.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
pooled_output = tf.gather_nd(
params=sequence_output,
indices=tf.stack(
values=(tf.range(input_shape[0], dtype=tf.int64), tf.math.argmax(input_ids, axis=-1)), axis=1
),
)
else:
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
pooled_output = tf.gather_nd(
params=sequence_output,
indices=tf.stack(
values=(
tf.range(input_shape[0], dtype=tf.int64),
tf.math.argmax(tf.cast(input_ids == self.eos_token_id, dtype=tf.int8), axis=-1),
),
axis=1,
),
)
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def _build_causal_attention_mask(self, batch_size, seq_length, dtype=tf.float32):
# It is possible with an unspecified sequence length for seq_length to be
# a runtime value, which is unsupported by tf.constant. Per the TensorFlow
# docs, tf.fill can handle runtime dynamic shapes:
# https://www.tensorflow.org/api_docs/python/tf/fill
diag = tf.cast(tf.fill((seq_length,), 0.0), dtype)
# set an additive 2D attention mask with all places being masked
to_mask = tf.cast(tf.fill((seq_length, seq_length), -10000.0), dtype)
# set diagonal & lower triangular parts to 0 (i.e. the places not to be masked)
# TIP: think the 2D matrix as the space of (query_seq, key_seq)
to_mask = tf.linalg.band_part(to_mask, 0, -1)
# to_mask = tf.linalg.band_part(to_mask, -1, 0)
to_mask = tf.linalg.set_diag(to_mask, diagonal=diag)
return tf.broadcast_to(input=to_mask, shape=(batch_size, 1, seq_length, seq_length))
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.embed_dim])
# Adapted from transformers.models.clip.modeling_tf_clip.TFCLIPVisionTransformer
class TFGroupViTVisionTransformer(keras.layers.Layer):
def __init__(self, config: GroupViTVisionConfig, **kwargs):
super().__init__(**kwargs)
self.embeddings = TFGroupViTVisionEmbeddings(config, name="embeddings")
self.encoder = TFGroupViTVisionEncoder(config, name="encoder")
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
self.embed_dim = config.hidden_size
def call(
self,
pixel_values: TFModelInputType,
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> tuple | TFBaseModelOutputWithPooling:
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
hidden_states=embedding_output,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
# normalize the last hidden state
last_hidden_state = self.layernorm(last_hidden_state)
pooled_output = tf.math.reduce_mean(last_hidden_state, axis=1)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, self.embed_dim])
@keras_serializable
# Copied from transformers.models.clip.modeling_tf_clip.TFCLIPTextMainLayer with CLIP->GroupViT
class TFGroupViTTextMainLayer(keras.layers.Layer):
config_class = GroupViTTextConfig
def __init__(self, config: GroupViTTextConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.text_model = TFGroupViTTextTransformer(config, name="text_model")
def get_input_embeddings(self) -> keras.layers.Layer:
return self.text_model.embeddings
def set_input_embeddings(self, value: tf.Variable):
self.text_model.embeddings.weight = value
self.text_model.embeddings.vocab_size = shape_list(value)[0]
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> TFBaseModelOutputWithPooling | tuple[tf.Tensor]:
if input_ids is None:
raise ValueError("You have to specify input_ids")
input_shape = shape_list(input_ids)
if attention_mask is None:
attention_mask = tf.fill(dims=input_shape, value=1)
text_model_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return text_model_outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "text_model", None) is not None:
with tf.name_scope(self.text_model.name):
self.text_model.build(None)
@keras_serializable
# Copied from transformers.models.clip.modeling_tf_clip.TFCLIPVisionMainLayer with CLIP->GroupViT
class TFGroupViTVisionMainLayer(keras.layers.Layer):
config_class = GroupViTVisionConfig
def __init__(self, config: GroupViTVisionConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.vision_model = TFGroupViTVisionTransformer(config, name="vision_model")
def get_input_embeddings(self) -> keras.layers.Layer:
return self.vision_model.embeddings
@unpack_inputs
def call(
self,
pixel_values: TFModelInputType | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> TFBaseModelOutputWithPooling | tuple[tf.Tensor]:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
vision_model_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return vision_model_outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "vision_model", None) is not None:
with tf.name_scope(self.vision_model.name):
self.vision_model.build(None)
@keras_serializable
# Adapted from transformers.models.clip.modeling_tf_clip.TFCLIPMainLayer
class TFGroupViTMainLayer(keras.layers.Layer):
config_class = GroupViTConfig
def __init__(self, config: GroupViTConfig, **kwargs):
super().__init__(**kwargs)
if not isinstance(config.text_config, GroupViTTextConfig):
raise TypeError(
"config.text_config is expected to be of type GroupViTTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.vision_config, GroupViTVisionConfig):
raise TypeError(
"config.vision_config is expected to be of type GroupViTVisionConfig but is of type"
f" {type(config.vision_config)}."
)
self.config = config
text_config = config.text_config
vision_config = config.vision_config
self.projection_dim = config.projection_dim
self.projection_intermediate_dim = config.projection_intermediate_dim
self.text_embed_dim = text_config.hidden_size
self.vision_embed_dim = vision_config.hidden_size
self.text_model = TFGroupViTTextTransformer(text_config, name="text_model")
self.vision_model = TFGroupViTVisionTransformer(vision_config, name="vision_model")
self.visual_projection = [
keras.layers.Dense(self.projection_intermediate_dim, name="visual_projection.0"),
keras.layers.BatchNormalization(name="visual_projection.1", momentum=0.9, epsilon=1e-5),
keras.layers.ReLU(name="visual_projection.2"),
keras.layers.Dense(self.projection_dim, name="visual_projection.3"),
]
self.text_projection = [
keras.layers.Dense(self.projection_intermediate_dim, name="text_projection.0"),
keras.layers.BatchNormalization(name="text_projection.1", momentum=0.9, epsilon=1e-5),
keras.layers.ReLU(name="text_projection.2"),
keras.layers.Dense(self.projection_dim, name="text_projection.3"),
]
def build(self, input_shape=None):
self.logit_scale = self.add_weight(
shape=(1,),
initializer=keras.initializers.Constant(self.config.logit_scale_init_value),
trainable=True,
name="logit_scale",
)
if self.built:
return
self.built = True
if getattr(self, "text_model", None) is not None:
with tf.name_scope(self.text_model.name):
self.text_model.build(None)
if getattr(self, "vision_model", None) is not None:
with tf.name_scope(self.vision_model.name):
self.vision_model.build(None)
if getattr(self, "visual_projection", None) is not None:
with tf.name_scope(self.visual_projection[0].name):
self.visual_projection[0].build([None, None, None, self.vision_embed_dim])
with tf.name_scope(self.visual_projection[1].name):
self.visual_projection[1].build((None, self.projection_intermediate_dim))
with tf.name_scope(self.visual_projection[3].name):
self.visual_projection[3].build([None, None, None, self.projection_intermediate_dim])
if getattr(self, "text_projection", None) is not None:
with tf.name_scope(self.text_projection[0].name):
self.text_projection[0].build([None, None, None, self.text_embed_dim])
with tf.name_scope(self.text_projection[1].name):
self.text_projection[1].build((None, self.projection_intermediate_dim))
with tf.name_scope(self.text_projection[3].name):
self.text_projection[3].build([None, None, None, self.projection_intermediate_dim])
@unpack_inputs
def get_text_features(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> tf.Tensor:
if input_ids is None:
raise ValueError("You have to specify either input_ids")
input_shape = shape_list(input_ids)
if attention_mask is None:
attention_mask = tf.fill(dims=input_shape, value=1)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = text_outputs[1]
for layer in self.text_projection:
pooled_output = layer(pooled_output)
text_features = pooled_output
return text_features
@unpack_inputs
def get_image_features(
self,
pixel_values: TFModelInputType | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> tf.Tensor:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = vision_outputs[1]
for layer in self.visual_projection:
pooled_output = layer(pooled_output)
image_features = pooled_output
return image_features
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
pixel_values: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
return_loss: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
output_segmentation: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> TFGroupViTModelOutput | tuple[tf.Tensor]:
if input_ids is None:
raise ValueError("You have to specify either input_ids")
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
input_shape = shape_list(input_ids)
if attention_mask is None:
attention_mask = tf.fill(dims=input_shape, value=1)
if output_segmentation:
output_attentions = True
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
image_embeds = vision_outputs[1]
for layer in self.visual_projection:
image_embeds = layer(image_embeds)
text_embeds = text_outputs[1]
for layer in self.text_projection:
text_embeds = layer(text_embeds)
# normalized features
image_embeds = image_embeds / tf.norm(image_embeds, axis=-1, keepdims=True)
text_embeds = text_embeds / tf.norm(text_embeds, axis=-1, keepdims=True)
# cosine similarity as logits
logit_scale = tf.math.exp(self.logit_scale)
logits_per_text = tf.matmul(text_embeds, image_embeds, transpose_b=True) * logit_scale
logits_per_image = tf.transpose(logits_per_text)
seg_logits = None
if output_segmentation:
# grouped features
# [batch_size_image, num_group, hidden_size]
image_group_embeds = vision_outputs[0]
# [batch_size_image*num_group, hidden_size]
image_group_embeds = tf.reshape(image_group_embeds, shape=(-1, shape_list(image_group_embeds)[-1]))
for layer in self.visual_projection:
image_group_embeds = layer(image_group_embeds)
if output_hidden_states:
attentions = vision_outputs[3]
else:
attentions = vision_outputs[2]
# [batch_size_image, num_group, height, width]
grouping = get_grouping_from_attentions(attentions, pixel_values.shape[2:])
# normalized features
image_group_embeds = image_group_embeds / tf.norm(
tensor=image_group_embeds, ord="euclidean", axis=-1, keepdims=True
)
# [batch_size_image x num_group, batch_size_text]
logits_per_image_group = tf.matmul(image_group_embeds, text_embeds, transpose_b=True) * logit_scale
# [batch_size_image, batch_size_text, num_group]
logits_per_image_group = tf.reshape(
logits_per_image_group, shape=(image_embeds.shape[0], -1, text_embeds.shape[0])
)
logits_per_image_group = tf.transpose(logits_per_image_group, perm=(0, 2, 1))
# [batch_size_image, batch_size_text, height x width]
flatten_grouping = tf.reshape(grouping, shape=(shape_list(grouping)[0], shape_list(grouping)[1], -1))
# [batch_size_image, batch_size_text, height, width]
seg_logits = tf.matmul(logits_per_image_group, flatten_grouping) * logit_scale
seg_logits = tf.reshape(
seg_logits, shape=(seg_logits.shape[0], seg_logits.shape[1], grouping.shape[2], grouping.shape[3])
)
loss = None
if return_loss:
loss = groupvit_loss(logits_per_text)[None, ...]
if not return_dict:
if seg_logits is not None:
output = (
logits_per_image,
logits_per_text,
seg_logits,
text_embeds,
image_embeds,
text_outputs,
vision_outputs,
)
else:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return TFGroupViTModelOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
segmentation_logits=seg_logits,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
class TFGroupViTPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GroupViTConfig
base_model_prefix = "groupvit"
GROUPVIT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TF 2.0 models accepts two formats as inputs:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using [`keras.Model.fit`] method which currently requires having all the
tensors in the first argument of the model call function: `model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the
first positional argument :
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
</Tip>
Args:
config ([`GroupViTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
GROUPVIT_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`np.ndarray`, `tf.Tensor`, `list[tf.Tensor]` ``dict[str, tf.Tensor]` or `dict[str, np.ndarray]` and each example must have the shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
GROUPVIT_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`np.ndarray`, `tf.Tensor`, `list[tf.Tensor]`, `dict[str, tf.Tensor]` or `dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`CLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
GROUPVIT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`np.ndarray`, `tf.Tensor`, `list[tf.Tensor]` ``dict[str, tf.Tensor]` or `dict[str, np.ndarray]` and each example must have the shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
pixel_values (`np.ndarray`, `tf.Tensor`, `list[tf.Tensor]` `dict[str, tf.Tensor]` or `dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`CLIPImageProcessor.__call__`] for details.
attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
class TFGroupViTTextModel(TFGroupViTPreTrainedModel):
config_class = GroupViTTextConfig
main_input_name = "input_ids"
def __init__(self, config: GroupViTTextConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.groupvit = TFGroupViTTextMainLayer(config, name="groupvit")
@unpack_inputs
@add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=GroupViTTextConfig)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> TFBaseModelOutputWithPooling | tuple[tf.Tensor]:
r"""
Returns:
Examples:
```python
>>> from transformers import CLIPTokenizer, TFGroupViTTextModel
>>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> model = TFGroupViTTextModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
```"""
outputs = self.groupvit(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "groupvit", None) is not None:
with tf.name_scope(self.groupvit.name):
self.groupvit.build(None)
class TFGroupViTVisionModel(TFGroupViTPreTrainedModel):
config_class = GroupViTVisionConfig
main_input_name = "pixel_values"
def __init__(self, config: GroupViTVisionConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.groupvit = TFGroupViTVisionMainLayer(config, name="groupvit")
@unpack_inputs
@add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=GroupViTVisionConfig)
def call(
self,
pixel_values: TFModelInputType | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> TFBaseModelOutputWithPooling | tuple[tf.Tensor]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, TFGroupViTVisionModel
>>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> model = TFGroupViTVisionModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
```"""
outputs = self.groupvit(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "groupvit", None) is not None:
with tf.name_scope(self.groupvit.name):
self.groupvit.build(None)
@add_start_docstrings(GROUPVIT_START_DOCSTRING)
class TFGroupViTModel(TFGroupViTPreTrainedModel):
config_class = GroupViTConfig
def __init__(self, config: GroupViTConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.groupvit = TFGroupViTMainLayer(config, name="groupvit")
@unpack_inputs
@add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def get_text_features(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> tf.Tensor:
r"""
Returns:
text_features (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying
the projection layer to the pooled output of [`TFGroupViTTextModel`].
Examples:
```python
>>> from transformers import CLIPTokenizer, TFGroupViTModel
>>> model = TFGroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
>>> text_features = model.get_text_features(**inputs)
```"""
text_features = self.groupvit.get_text_features(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return text_features
@unpack_inputs
@add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values: TFModelInputType | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> tf.Tensor:
r"""
Returns:
image_features (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying
the projection layer to the pooled output of [`TFGroupViTVisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, TFGroupViTModel
>>> model = TFGroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="tf")
>>> image_features = model.get_image_features(**inputs)
```"""
image_features = self.groupvit.get_image_features(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return image_features
@unpack_inputs
@add_start_docstrings_to_model_forward(GROUPVIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFGroupViTModelOutput, config_class=GroupViTConfig)
def call(
self,
input_ids: TFModelInputType | None = None,
pixel_values: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
return_loss: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
output_segmentation: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> TFGroupViTModelOutput | tuple[tf.Tensor]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, TFGroupViTModel
>>> import tensorflow as tf
>>> model = TFGroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="tf", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = tf.math.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities
```"""
outputs = self.groupvit(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
position_ids=position_ids,
return_loss=return_loss,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_segmentation=output_segmentation,
return_dict=return_dict,
training=training,
)
return outputs
def serving_output(self, output: TFGroupViTModelOutput) -> TFGroupViTModelOutput:
# TODO: As is this currently fails with saved_model=True, because
# TensorFlow cannot trace through nested dataclasses. Reference:
# https://github.com/huggingface/transformers/pull/16886
return output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "groupvit", None) is not None:
with tf.name_scope(self.groupvit.name):
self.groupvit.build(None)
__all__ = ["TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel"]