transformers/tests/pipelines/test_pipelines_visual_question_answering.py
Joao Gante 1d45d90e5d
Some checks are pending
Self-hosted runner (benchmark) / Benchmark (aws-g5-4xlarge-cache) (push) Waiting to run
Build documentation / build (push) Waiting to run
New model PR merged notification / Notify new model (push) Waiting to run
Slow tests on important models (on Push - A10) / Get all modified files (push) Waiting to run
Slow tests on important models (on Push - A10) / Slow & FA2 tests (push) Blocked by required conditions
Self-hosted runner (push-caller) / Check if setup was changed (push) Waiting to run
Self-hosted runner (push-caller) / build-docker-containers (push) Blocked by required conditions
Self-hosted runner (push-caller) / Trigger Push CI (push) Blocked by required conditions
Secret Leaks / trufflehog (push) Waiting to run
Update Transformers metadata / build_and_package (push) Waiting to run
[tests] remove TF tests (uses of require_tf) (#38944)
* remove uses of require_tf

* remove redundant import guards

* this class has no tests

* nits

* del tf rng comment
2025-06-25 17:29:10 +00:00

248 lines
9.2 KiB
Python

# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from datasets import load_dataset
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_torch,
require_torch_accelerator,
require_vision,
slow,
torch_device,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
from transformers.pipelines.pt_utils import KeyDataset
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
@is_pipeline_test
@require_torch
@require_vision
class VisualQuestionAnsweringPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def get_test_pipeline(
self,
model,
tokenizer=None,
image_processor=None,
feature_extractor=None,
processor=None,
torch_dtype="float32",
):
vqa_pipeline = pipeline(
"visual-question-answering",
model="hf-internal-testing/tiny-vilt-random-vqa",
torch_dtype=torch_dtype,
)
examples = [
{
"image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"question": "How many cats are there?",
},
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"question": "How many cats are there?",
},
]
return vqa_pipeline, examples
def run_pipeline_test(self, vqa_pipeline, examples):
outputs = vqa_pipeline(examples, top_k=1)
self.assertEqual(
outputs,
[
[{"score": ANY(float), "answer": ANY(str)}],
[{"score": ANY(float), "answer": ANY(str)}],
],
)
@require_torch
def test_small_model_pt(self):
vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
question = "How many cats are there?"
outputs = vqa_pipeline(image=image, question="How many cats are there?", top_k=2)
self.assertEqual(
outputs, [{"score": ANY(float), "answer": ANY(str)}, {"score": ANY(float), "answer": ANY(str)}]
)
outputs = vqa_pipeline({"image": image, "question": question}, top_k=2)
self.assertEqual(
outputs, [{"score": ANY(float), "answer": ANY(str)}, {"score": ANY(float), "answer": ANY(str)}]
)
@require_torch
@require_torch_accelerator
def test_small_model_pt_blip2(self):
vqa_pipeline = pipeline(
"visual-question-answering", model="hf-internal-testing/tiny-random-Blip2ForConditionalGeneration"
)
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
question = "How many cats are there?"
outputs = vqa_pipeline(image=image, question=question)
self.assertEqual(outputs, [{"answer": ANY(str)}])
outputs = vqa_pipeline({"image": image, "question": question})
self.assertEqual(outputs, [{"answer": ANY(str)}])
outputs = vqa_pipeline([{"image": image, "question": question}, {"image": image, "question": question}])
self.assertEqual(outputs, [[{"answer": ANY(str)}]] * 2)
vqa_pipeline = pipeline(
"visual-question-answering",
model="hf-internal-testing/tiny-random-Blip2ForConditionalGeneration",
model_kwargs={"torch_dtype": torch.float16},
device=torch_device,
)
self.assertEqual(vqa_pipeline.model.device, torch.device(f"{torch_device}:0"))
self.assertEqual(vqa_pipeline.model.language_model.dtype, torch.float16)
self.assertEqual(vqa_pipeline.model.vision_model.dtype, torch.float16)
outputs = vqa_pipeline(image=image, question=question)
self.assertEqual(outputs, [{"answer": ANY(str)}])
@slow
@require_torch
def test_large_model_pt(self):
vqa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
question = "How many cats are there?"
outputs = vqa_pipeline(image=image, question=question, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]
)
outputs = vqa_pipeline({"image": image, "question": question}, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]
)
outputs = vqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2,
)
@slow
@require_torch
@require_torch_accelerator
def test_large_model_pt_blip2(self):
vqa_pipeline = pipeline(
"visual-question-answering",
model="Salesforce/blip2-opt-2.7b",
model_kwargs={"torch_dtype": torch.float16},
device=torch_device,
)
self.assertEqual(vqa_pipeline.model.device, torch.device(f"{torch_device}:0"))
self.assertEqual(vqa_pipeline.model.language_model.dtype, torch.float16)
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
question = "Question: how many cats are there? Answer:"
outputs = vqa_pipeline(image=image, question=question)
self.assertEqual(outputs, [{"answer": "two"}])
outputs = vqa_pipeline({"image": image, "question": question})
self.assertEqual(outputs, [{"answer": "two"}])
outputs = vqa_pipeline([{"image": image, "question": question}, {"image": image, "question": question}])
self.assertEqual(outputs, [[{"answer": "two"}]] * 2)
@require_torch
def test_small_model_pt_image_list(self):
vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
images = [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000004016.png",
]
outputs = vqa_pipeline(image=images, question="How many cats are there?", top_k=1)
self.assertEqual(
outputs, [[{"score": ANY(float), "answer": ANY(str)}], [{"score": ANY(float), "answer": ANY(str)}]]
)
@require_torch
def test_small_model_pt_question_list(self):
vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
questions = ["How many cats are there?", "Are there any dogs?"]
outputs = vqa_pipeline(image=image, question=questions, top_k=1)
self.assertEqual(
outputs, [[{"score": ANY(float), "answer": ANY(str)}], [{"score": ANY(float), "answer": ANY(str)}]]
)
@require_torch
def test_small_model_pt_both_list(self):
vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
images = [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000004016.png",
]
questions = ["How many cats are there?", "Are there any dogs?"]
outputs = vqa_pipeline(image=images, question=questions, top_k=1)
self.assertEqual(
outputs,
[
[{"score": ANY(float), "answer": ANY(str)}],
[{"score": ANY(float), "answer": ANY(str)}],
[{"score": ANY(float), "answer": ANY(str)}],
[{"score": ANY(float), "answer": ANY(str)}],
],
)
@require_torch
def test_small_model_pt_dataset(self):
vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
dataset = load_dataset("hf-internal-testing/dummy_image_text_data", split="train[:2]")
question = "What's in the image?"
outputs = vqa_pipeline(image=KeyDataset(dataset, "image"), question=question, top_k=1)
self.assertEqual(
outputs,
[
[{"score": ANY(float), "answer": ANY(str)}],
[{"score": ANY(float), "answer": ANY(str)}],
],
)