mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 02:31:11 +06:00

* added condition for top_k Doc mismatch fix * initilation of test file for top_k changes * added test for returning all labels * added test for few labels * tests/test_audio_classification_top_k.py * final fix * ruff fix --------- Co-authored-by: sambhavnoobcoder <indosambahv@gmail.com>
61 lines
2.0 KiB
Python
61 lines
2.0 KiB
Python
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import pipeline
|
|
from transformers.testing_utils import require_torch
|
|
|
|
|
|
@require_torch
|
|
class AudioClassificationTopKTest(unittest.TestCase):
|
|
def test_top_k_none_returns_all_labels(self):
|
|
model_name = "superb/wav2vec2-base-superb-ks" # model with more than 5 labels
|
|
classification_pipeline = pipeline(
|
|
"audio-classification",
|
|
model=model_name,
|
|
top_k=None,
|
|
)
|
|
|
|
# Create dummy input
|
|
sampling_rate = 16000
|
|
signal = np.zeros((sampling_rate,), dtype=np.float32)
|
|
|
|
result = classification_pipeline(signal)
|
|
num_labels = classification_pipeline.model.config.num_labels
|
|
|
|
self.assertEqual(len(result), num_labels, "Should return all labels when top_k is None")
|
|
|
|
def test_top_k_none_with_few_labels(self):
|
|
model_name = "superb/hubert-base-superb-er" # model with fewer labels
|
|
classification_pipeline = pipeline(
|
|
"audio-classification",
|
|
model=model_name,
|
|
top_k=None,
|
|
)
|
|
|
|
# Create dummy input
|
|
sampling_rate = 16000
|
|
signal = np.zeros((sampling_rate,), dtype=np.float32)
|
|
|
|
result = classification_pipeline(signal)
|
|
num_labels = classification_pipeline.model.config.num_labels
|
|
|
|
self.assertEqual(len(result), num_labels, "Should handle models with fewer labels correctly")
|
|
|
|
def test_top_k_greater_than_labels(self):
|
|
model_name = "superb/hubert-base-superb-er"
|
|
classification_pipeline = pipeline(
|
|
"audio-classification",
|
|
model=model_name,
|
|
top_k=100, # intentionally large number
|
|
)
|
|
|
|
# Create dummy input
|
|
sampling_rate = 16000
|
|
signal = np.zeros((sampling_rate,), dtype=np.float32)
|
|
|
|
result = classification_pipeline(signal)
|
|
num_labels = classification_pipeline.model.config.num_labels
|
|
|
|
self.assertEqual(len(result), num_labels, "Should cap top_k to number of labels")
|