transformers/docs
Pavel Iakubovskii 1c37e8c1a6
Add sdpa and FA2 for CLIP (#31940)
* Squashed commit of the following:

commit 102842cd477219b9f9bcb23a0bca3a8b92bd732f
Author: Pavel Iakubovskii <qubvel@gmail.com>
Date:   Fri Jul 12 18:23:52 2024 +0000

    Add model-specific sdpa tests

commit 60e4c88581abf89ec098da84ed8e92aa904c997d
Author: Pavel Iakubovskii <qubvel@gmail.com>
Date:   Fri Jul 12 18:20:53 2024 +0000

    Add fallback to eager (expensive operation)

commit c29033d30e7ffde4327e8a15cbbc6bee37546f80
Author: Pavel Iakubovskii <qubvel@gmail.com>
Date:   Thu Jul 11 17:09:55 2024 +0000

    Fix attn_implementation propagation

commit 783aed05f0f38cb2f99e758f81db6838ac55b9f8
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 09:05:27 2024 +0530

    style

commit e77e703ca75d00447cda277eca6b886cd32bddc0
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 09:04:57 2024 +0530

    add comment to explain why I had to touch forbidden codebase.

commit ab9d8849758e7773a31778ccba71588d18552623
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 09:03:02 2024 +0530

    fix: flax attribute access.

commit c570fc0abf9d1bd58c291aae3c7e384f995996d2
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 08:23:54 2024 +0530

    fix tensorflow attribute name.

commit 32c812871cfdb268d8a6e3e2c61c5c925c8ed47e
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 07:57:10 2024 +0530

    fix attribute access.

commit 4f41a0138b6c417aed9c9332278f8bcd979cb7c2
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 07:44:02 2024 +0530

    _from_config.

commit 35aed64ff602422adcf41d7f677a0a24bd9eccae
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 18:46:52 2024 +0530

    propagation of attn_implementation.

commit 4c25c19845438b1dc1d35a5adf9436151c8c5940
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 09:24:36 2024 +0530

    style again

commit 5f7dc5c5015c0f8116408f737e8c318d1802c80c
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 09:19:05 2024 +0530

    use from_config.

commit b70c409956d0359fa6ae5372275d2a20ba7e3389
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 09:13:43 2024 +0530

    quality

commit a7b63beff53d0fc754c6564e2a7b51731ddee49d
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 14:35:10 2024 +0200

    add benchmark numbers

commit 455b0eaea50862b8458c8f422b60fe60ae40fdcb
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:50:16 2024 +0200

    Revert "reflect feedback more"

    This reverts commit dc123e71ef.

commit ca674829d28787349c2a9593a14e0f1d41f04ea4
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:50:05 2024 +0200

    Revert "fix"

    This reverts commit 37a1cb35b8.

commit fab2dd8576c099eb1a3464958cb206a664d28247
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:47:46 2024 +0200

    fix

commit fbc6ae50fd6f2d36294d31e191761631b701d696
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:38:30 2024 +0200

    reflect feedback more

commit 87245bb020b2d60a89afe318a951df0159404fc9
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 08:54:34 2024 +0530

    fixes

commit 1057cc26390ee839251e7f8b3326c4207595fb23
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:49:03 2024 +0530

    don't explicit set attn_implementation in tests

commit e33f75916fc8a99f516b1cf449dbbe9d3aabda81
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:43:54 2024 +0530

    explicitly override attn_implementation in the towers.

commit 4cf41cb1bc885c39df7cb8f2a0694ebf23299235
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:38:42 2024 +0530

    import in one-line.

commit f2cc447ae9e74ccfacb448140cdf88259d4afc8c
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:34:58 2024 +0530

    move sdpa mention to usage tips.

commit 92884766c64dbb456926a3a84dd427be1349fa95
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Mon Apr 29 10:58:26 2024 +0530

    fix: memory allocation problem.

commit d7ffbbfe12f7750b7d0a361420f35c13e0ea787d
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Mon Apr 29 09:56:59 2024 +0530

    fix-copies

commit 8dfc3731cedd02e36acd3fe56bb2e6d61efd25d8
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri Apr 26 20:16:12 2024 +0530

    address arthur's comments.

commit d2ed7b4ce4ff15ae9aa4d3d0500f1544e3dcd9e9
Author: Sayak Paul <spsayakpaul@gmail.com>
Date:   Fri Apr 26 20:08:15 2024 +0530

    Apply suggestions from code review

    Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

commit 46e04361f37ded5c522ff05e9f725b9f82dce40e
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Wed Apr 24 09:55:27 2024 +0530

    add to docs.

commit 831629158ad40d34d8983f209afb2740ba041af2
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Wed Apr 24 09:33:10 2024 +0530

    styling.g

commit d263a119c77314250f4b4c8469caf42559197f22
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Wed Apr 24 09:15:20 2024 +0530

    up

commit d44f9d3d7633d4c241a737a1bc317f791f6aedb3
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 18:40:42 2024 +0530

    handle causal and attention mask

commit 122f1d60153df6666b634a94e38d073f3f260926
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 15:18:21 2024 +0530

    test fixes.

commit 4382d8cff6fa1dee5dbcf0d06b3e2841231e36f5
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 09:39:25 2024 +0530

    fix: scaling inside sdpa.

commit 0f629989efc48b7315cf19405a81e02955efe7e5
Author: Sayak Paul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 08:14:58 2024 +0530

    Update src/transformers/models/clip/modeling_clip.py

    Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

commit 14367316877dc27ea40f767ad1aee38bbc97e4ce
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Mon Apr 22 16:21:36 2024 +0530

    add: sdpa support to clip.

* Remove fallback for empty attention mask (expensive operation)

* Fix typing in copies

* Add flash attention

* Add flash attention tests

* List CLIP in FA docs

* Fix embeddings attributes and tf

* [run-slow] clip

* Update clip documentation

* Remove commented code, skip compile dynamic for CLIPModel

* Fix doc

* Fix doc 2

* Remove double transpose

* Add torch version check for contiguous()

* Add comment to test mixin

* Fix copies

* Add comment for mask

* Update docs

* [run-slow] clip
2024-07-18 10:30:37 +05:30
..
source Add sdpa and FA2 for CLIP (#31940) 2024-07-18 10:30:37 +05:30
README.md [Docs] Fix placement of tilde character (#28913) 2024-02-07 17:19:39 -08:00
TRANSLATING.md Update list of persons to tag (#25708) 2023-08-24 10:13:30 +02:00

Generating the documentation

To generate the documentation, you first have to build it. Several packages are necessary to build the doc, you can install them with the following command, at the root of the code repository:

pip install -e ".[docs]"

Then you need to install our special tool that builds the documentation:

pip install git+https://github.com/huggingface/doc-builder

NOTE

You only need to generate the documentation to inspect it locally (if you're planning changes and want to check how they look before committing for instance). You don't have to commit the built documentation.


Building the documentation

Once you have setup the doc-builder and additional packages, you can generate the documentation by typing the following command:

doc-builder build transformers docs/source/en/ --build_dir ~/tmp/test-build

You can adapt the --build_dir to set any temporary folder that you prefer. This command will create it and generate the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite Markdown editor.

Previewing the documentation

To preview the docs, first install the watchdog module with:

pip install watchdog

Then run the following command:

doc-builder preview {package_name} {path_to_docs}

For example:

doc-builder preview transformers docs/source/en/

The docs will be viewable at http://localhost:3000. You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives.


NOTE

The preview command only works with existing doc files. When you add a completely new file, you need to update _toctree.yml & restart preview command (ctrl-c to stop it & call doc-builder preview ... again).


Adding a new element to the navigation bar

Accepted files are Markdown (.md).

Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting the filename without the extension in the _toctree.yml file.

Renaming section headers and moving sections

It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.

Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.

So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file:

Sections that were moved:

[ <a href="#section-b">Section A</a><a id="section-a"></a> ]

and of course, if you moved it to another file, then:

Sections that were moved:

[ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ]

Use the relative style to link to the new file so that the versioned docs continue to work.

For an example of a rich moved section set please see the very end of the Trainer doc.

Writing Documentation - Specification

The huggingface/transformers documentation follows the Google documentation style for docstrings, although we can write them directly in Markdown.

Adding a new tutorial

Adding a new tutorial or section is done in two steps:

  • Add a new file under ./source. This file can either be ReStructuredText (.rst) or Markdown (.md).
  • Link that file in ./source/_toctree.yml on the correct toc-tree.

Make sure to put your new file under the proper section. It's unlikely to go in the first section (Get Started), so depending on the intended targets (beginners, more advanced users, or researchers) it should go in sections two, three, or four.

Translating

When translating, refer to the guide at ./TRANSLATING.md.

Adding a new model

When adding a new model:

  • Create a file xxx.md or under ./source/model_doc (don't hesitate to copy an existing file as template).
  • Link that file in ./source/_toctree.yml.
  • Write a short overview of the model:
    • Overview with paper & authors
    • Paper abstract
    • Tips and tricks and how to use it best
  • Add the classes that should be linked in the model. This generally includes the configuration, the tokenizer, and every model of that class (the base model, alongside models with additional heads), both in PyTorch and TensorFlow. The order is generally:
    • Configuration
    • Tokenizer
    • PyTorch base model
    • PyTorch head models
    • TensorFlow base model
    • TensorFlow head models
    • Flax base model
    • Flax head models

These classes should be added using our Markdown syntax. Usually as follows:

## XXXConfig

[[autodoc]] XXXConfig

This will include every public method of the configuration that is documented. If for some reason you wish for a method not to be displayed in the documentation, you can do so by specifying which methods should be in the docs:

## XXXTokenizer

[[autodoc]] XXXTokenizer
    - build_inputs_with_special_tokens
    - get_special_tokens_mask
    - create_token_type_ids_from_sequences
    - save_vocabulary

If you just want to add a method that is not documented (for instance magic methods like __call__ are not documented by default) you can put the list of methods to add in a list that contains all:

## XXXTokenizer

[[autodoc]] XXXTokenizer
    - all
    - __call__

Writing source documentation

Values that should be put in code should either be surrounded by backticks: `like so`. Note that argument names and objects like True, None, or any strings should usually be put in code.

When mentioning a class, function, or method, it is recommended to use our syntax for internal links so that our tool adds a link to its documentation with this syntax: [`XXXClass`] or [`function`]. This requires the class or function to be in the main package.

If you want to create a link to some internal class or function, you need to provide its path. For instance: [`utils.ModelOutput`]. This will be converted into a link with utils.ModelOutput in the description. To get rid of the path and only keep the name of the object you are linking to in the description, add a ~: [`~utils.ModelOutput`] will generate a link with ModelOutput in the description.

The same works for methods so you can either use [`XXXClass.method`] or [`~XXXClass.method`].

Defining arguments in a method

Arguments should be defined with the Args: (or Arguments: or Parameters:) prefix, followed by a line return and an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its description:

    Args:
        n_layers (`int`): The number of layers of the model.

If the description is too long to fit in one line, another indentation is necessary before writing the description after the argument.

Here's an example showcasing everything so far:

    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`AlbertTokenizer`]. See [`~PreTrainedTokenizer.encode`] and
            [`~PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)

For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the following signature:

def my_function(x: str = None, a: float = 1):

then its documentation should look like this:

    Args:
        x (`str`, *optional*):
            This argument controls ...
        a (`float`, *optional*, defaults to 1):
            This argument is used to ...

Note that we always omit the "defaults to `None`" when None is the default for any argument. Also note that even if the first line describing your argument type and its default gets long, you can't break it on several lines. You can however, write as many lines as you want in the indented description (see the example above with input_ids).

Writing a multi-line code block

Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown:

```
# first line of code
# second line
# etc
```

We follow the doctest syntax for the examples to automatically test the results to stay consistent with the library.

Writing a return block

The return block should be introduced with the Returns: prefix, followed by a line return and an indentation. The first line should be the type of the return, followed by a line return. No need to indent further for the elements building the return.

Here's an example of a single value return:

    Returns:
        `List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.

Here's an example of a tuple return, comprising several objects:

    Returns:
        `tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
        - ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` --
          Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
        - **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) --
          Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

Adding an image

Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted dataset like the ones hosted on hf-internal-testing in which to place these files and reference them by URL. We recommend putting them in the following dataset: huggingface/documentation-images. If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images to this dataset.

Styling the docstring

We have an automatic script running with the make style comment that will make sure that:

  • the docstrings fully take advantage of the line width
  • all code examples are formatted using black, like the code of the Transformers library

This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's recommended to commit your changes before running make style, so you can revert the changes done by that script easily.

Testing documentation examples

Good documentation often comes with an example of how a specific function or class should be used. Each model class should contain at least one example showcasing how to use this model class in inference. E.g. the class Wav2Vec2ForCTC includes an example of how to transcribe speech to text in the docstring of its forward function.

Writing documentation examples

The syntax for Example docstrings can look as follows:

    Example:

    ```python
    >>> from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
    >>> from datasets import load_dataset
    >>> import torch

    >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
    >>> dataset = dataset.sort("id")
    >>> sampling_rate = dataset.features["audio"].sampling_rate

    >>> processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
    >>> model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")

    >>> # audio file is decoded on the fly
    >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
    >>> with torch.no_grad():
    ...     logits = model(**inputs).logits
    >>> predicted_ids = torch.argmax(logits, dim=-1)

    >>> # transcribe speech
    >>> transcription = processor.batch_decode(predicted_ids)
    >>> transcription[0]
    'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'
    ```

The docstring should give a minimal, clear example of how the respective model is to be used in inference and also include the expected (ideally sensible) output. Often, readers will try out the example before even going through the function or class definitions. Therefore, it is of utmost importance that the example works as expected.

Docstring testing

To do so each example should be included in the doctests. We use pytests' doctest integration to verify that all of our examples run correctly. For Transformers, the doctests are run on a daily basis via GitHub Actions as can be seen here.

For Python files

Run all the tests in the docstrings of a given file with the following command, here is how we test the modeling file of Wav2Vec2 for instance:

pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py -sv --doctest-continue-on-failure

If you want to isolate a specific docstring, just add :: after the file name then type the whole path of the function/class/method whose docstring you want to test. For instance, here is how to just test the forward method of Wav2Vec2ForCTC:

pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py::transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward -sv --doctest-continue-on-failure

For Markdown files

You can test locally a given file with this command (here testing the quicktour):

pytest --doctest-modules docs/source/quicktour.md -sv --doctest-continue-on-failure --doctest-glob="*.md"

Writing doctests

Here are a few tips to help you debug the doctests and make them pass:

  • The outputs of the code need to match the expected output exactly, so make sure you have the same outputs. In particular doctest will see a difference between single quotes and double quotes, or a missing parenthesis. The only exceptions to that rule are:
    • whitespace: one give whitespace (space, tabulation, new line) is equivalent to any number of whitespace, so you can add new lines where there are spaces to make your output more readable.
    • numerical values: you should never put more than 4 or 5 digits to expected results as different setups or library versions might get you slightly different results. doctest is configured to ignore any difference lower than the precision to which you wrote (so 1e-4 if you write 4 digits).
  • Don't leave a block of code that is very long to execute. If you can't make it fast, you can either not use the doctest syntax on it (so that it's ignored), or if you want to use the doctest syntax to show the results, you can add a comment # doctest: +SKIP at the end of the lines of code too long to execute
  • Each line of code that produces a result needs to have that result written below. You can ignore an output if you don't want to show it in your code example by adding a comment # doctest: +IGNORE_RESULT at the end of the line of code producing it.