transformers/tests/test_pipelines_table_question_answering.py
Lysandre Debut 1c1a2ffbff
TableQuestionAnsweringPipeline (#9145)
* AutoModelForTableQuestionAnswering

* TableQuestionAnsweringPipeline

* Apply suggestions from Patrick's code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Sylvain and Patrick comments

* Better PyTorch/TF error message

* Add integration tests

* Argument Handler naming

Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>

* Fix docs to appease the documentation gods

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2020-12-16 12:31:50 -05:00

235 lines
9.6 KiB
Python

# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.pipelines import Pipeline, pipeline
from transformers.testing_utils import require_pandas, require_torch, require_torch_scatter, slow
from .test_pipelines_common import CustomInputPipelineCommonMixin
@require_torch_scatter
@require_torch
@require_pandas
class TQAPipelineTests(CustomInputPipelineCommonMixin, unittest.TestCase):
pipeline_task = "table-question-answering"
pipeline_running_kwargs = {
"padding": "max_length",
}
small_models = [
"lysandre/tiny-tapas-random-wtq",
"lysandre/tiny-tapas-random-sqa",
]
large_models = ["nielsr/tapas-base-finetuned-wtq"] # Models tested with the @slow decorator
valid_inputs = [
{
"table": {
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": ["56", "45", "59"],
"number of movies": ["87", "53", "69"],
"date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
},
"query": "how many movies has george clooney played in?",
},
{
"table": {
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": ["56", "45", "59"],
"number of movies": ["87", "53", "69"],
"date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
},
"query": ["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
},
{
"table": {
"Repository": ["Transformers", "Datasets", "Tokenizers"],
"Stars": ["36542", "4512", "3934"],
"Contributors": ["651", "77", "34"],
"Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
},
"query": [
"What repository has the largest number of stars?",
"Given that the numbers of stars defines if a repository is active, what repository is the most active?",
"What is the number of repositories?",
"What is the average number of stars?",
"What is the total amount of stars?",
],
},
]
def _test_pipeline(self, table_querier: Pipeline):
output_keys = {"answer", "coordinates", "cells"}
valid_inputs = self.valid_inputs
invalid_inputs = [
{"query": "What does it do with empty context ?", "table": ""},
{"query": "What does it do with empty context ?", "table": None},
]
self.assertIsNotNone(table_querier)
mono_result = table_querier(valid_inputs[0])
self.assertIsInstance(mono_result, dict)
for key in output_keys:
self.assertIn(key, mono_result)
multi_result = table_querier(valid_inputs)
self.assertIsInstance(multi_result, list)
for result in multi_result:
self.assertIsInstance(result, (list, dict))
for result in multi_result:
if isinstance(result, list):
for _result in result:
for key in output_keys:
self.assertIn(key, _result)
else:
for key in output_keys:
self.assertIn(key, result)
for bad_input in invalid_inputs:
self.assertRaises(ValueError, table_querier, bad_input)
self.assertRaises(ValueError, table_querier, invalid_inputs)
def test_aggregation(self):
table_querier = pipeline(
"table-question-answering",
model="lysandre/tiny-tapas-random-wtq",
tokenizer="lysandre/tiny-tapas-random-wtq",
)
self.assertIsInstance(table_querier.model.config.aggregation_labels, dict)
self.assertIsInstance(table_querier.model.config.no_aggregation_label_index, int)
mono_result = table_querier(self.valid_inputs[0])
multi_result = table_querier(self.valid_inputs)
self.assertIn("aggregator", mono_result)
for result in multi_result:
if isinstance(result, list):
for _result in result:
self.assertIn("aggregator", _result)
else:
self.assertIn("aggregator", result)
def test_aggregation_with_sequential(self):
table_querier = pipeline(
"table-question-answering",
model="lysandre/tiny-tapas-random-wtq",
tokenizer="lysandre/tiny-tapas-random-wtq",
)
self.assertIsInstance(table_querier.model.config.aggregation_labels, dict)
self.assertIsInstance(table_querier.model.config.no_aggregation_label_index, int)
mono_result = table_querier(self.valid_inputs[0], sequential=True)
multi_result = table_querier(self.valid_inputs, sequential=True)
self.assertIn("aggregator", mono_result)
for result in multi_result:
if isinstance(result, list):
for _result in result:
self.assertIn("aggregator", _result)
else:
self.assertIn("aggregator", result)
def test_sequential(self):
table_querier = pipeline(
"table-question-answering",
model="lysandre/tiny-tapas-random-sqa",
tokenizer="lysandre/tiny-tapas-random-sqa",
)
sequential_mono_result_0 = table_querier(self.valid_inputs[0], sequential=True)
sequential_mono_result_1 = table_querier(self.valid_inputs[1], sequential=True)
sequential_multi_result = table_querier(self.valid_inputs, sequential=True)
mono_result_0 = table_querier(self.valid_inputs[0])
mono_result_1 = table_querier(self.valid_inputs[1])
multi_result = table_querier(self.valid_inputs)
# First valid input has a single question, the dict should be equal
self.assertDictEqual(sequential_mono_result_0, mono_result_0)
# Second valid input has several questions, the questions following the first one should not be equal
self.assertNotEqual(sequential_mono_result_1, mono_result_1)
# Assert that we get the same results when passing in several sequences.
for index, (sequential_multi, multi) in enumerate(zip(sequential_multi_result, multi_result)):
if index == 0:
self.assertDictEqual(sequential_multi, multi)
else:
self.assertNotEqual(sequential_multi, multi)
@slow
def test_integration_wtq(self):
tqa_pipeline = pipeline("table-question-answering")
data = {
"Repository": ["Transformers", "Datasets", "Tokenizers"],
"Stars": ["36542", "4512", "3934"],
"Contributors": ["651", "77", "34"],
"Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
}
queries = [
"What repository has the largest number of stars?",
"Given that the numbers of stars defines if a repository is active, what repository is the most active?",
"What is the number of repositories?",
"What is the average number of stars?",
"What is the total amount of stars?",
]
results = tqa_pipeline(data, queries)
expected_results = [
{"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"]},
{"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"]},
{
"answer": "Transformers, Datasets, Tokenizers",
"coordinates": [(0, 0), (1, 0), (2, 0)],
"cells": ["Transformers", "Datasets", "Tokenizers"],
},
{
"answer": "36542, 4512, 3934",
"coordinates": [(0, 1), (1, 1), (2, 1)],
"cells": ["36542", "4512", "3934"],
},
{
"answer": "36542, 4512, 3934",
"coordinates": [(0, 1), (1, 1), (2, 1)],
"cells": ["36542", "4512", "3934"],
},
]
self.assertListEqual(results, expected_results)
@slow
def test_integration_sqa(self):
tqa_pipeline = pipeline(
"table-question-answering",
model="nielsr/tapas-base-finetuned-sqa",
tokenizer="nielsr/tapas-base-finetuned-sqa",
)
data = {
"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
"Age": ["56", "45", "59"],
"Number of movies": ["87", "53", "69"],
"Date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
}
queries = ["How many movies has George Clooney played in?", "How old is he?", "What's his date of birth?"]
results = tqa_pipeline(data, queries, sequential=True)
expected_results = [
{"answer": "69", "coordinates": [(2, 2)], "cells": ["69"]},
{"answer": "59", "coordinates": [(2, 1)], "cells": ["59"]},
{"answer": "28 november 1967", "coordinates": [(2, 3)], "cells": ["28 november 1967"]},
]
self.assertListEqual(results, expected_results)