transformers/tests/quantization/quark_integration/test_quark.py
fxmarty-amd 1a374799ce
Support loading Quark quantized models in Transformers (#36372)
* add quark quantizer

* add quark doc

* clean up doc

* fix tests

* make style

* more style fixes

* cleanup imports

* cleaning

* precise install

* Update docs/source/en/quantization/quark.md

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update tests/quantization/quark_integration/test_quark.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* remove import guard as suggested

* update copyright headers

* add quark to transformers-quantization-latest-gpu Dockerfile

* make tests pass on transformers main + quark==0.7

* add missing F8_E4M3 and F8_E5M2 keys from str_to_torch_dtype

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Bowen Bao <bowenbao@amd.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-03-20 15:40:51 +01:00

144 lines
5.3 KiB
Python

# coding=utf-8
# Copyright 2025 Advanced Micro Devices, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, QuarkConfig
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_quark,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.utils.import_utils import is_quark_available
if is_torch_available():
import torch
if is_quark_available():
from quark.torch.export.nn.modules.qparamslinear import QParamsLinear
class QuarkConfigTest(unittest.TestCase):
def test_commmon_args(self):
config = AutoConfig.from_pretrained("amd/Llama-3.1-8B-Instruct-w-int8-a-int8-sym-test")
QuarkConfig(**config.quantization_config)
@slow
@require_quark
@require_torch_gpu
class QuarkTest(unittest.TestCase):
reference_model_name = "meta-llama/Llama-3.1-8B-Instruct"
quantized_model_name = "amd/Llama-3.1-8B-Instruct-w-int8-a-int8-sym-test"
input_text = "Today I am in Paris and"
EXPECTED_OUTPUTS = set()
EXPECTED_OUTPUTS.add("Today I am in Paris and I am not in Paris, France\nToday I am in Paris, Illinois")
EXPECTED_OUTPUTS.add("Today I am in Paris and I am enjoying the city of light. I am not just any ordinary Paris")
EXPECTED_OUTPUTS.add("Today I am in Paris and I am enjoying my day off! The sun is shining, the birds are")
EXPECTED_RELATIVE_DIFFERENCE = 1.66
device_map = None
@classmethod
def setUpClass(cls):
"""
Setup reference & quantized model
"""
cls.model_fp16 = AutoModelForCausalLM.from_pretrained(
cls.reference_model_name, torch_dtype=torch.float16, device_map=cls.device_map
)
cls.mem_fp16 = cls.model_fp16.get_memory_footprint()
cls.tokenizer = AutoTokenizer.from_pretrained(cls.reference_model_name, use_fast=True)
cls.quantized_model = AutoModelForCausalLM.from_pretrained(
cls.quantized_model_name,
torch_dtype=torch.float16,
device_map=cls.device_map,
)
def test_memory_footprint(self):
mem_quantized = self.quantized_model.get_memory_footprint()
self.assertTrue(self.mem_fp16 / mem_quantized > self.EXPECTED_RELATIVE_DIFFERENCE)
def test_device_and_dtype_assignment(self):
r"""
Test whether trying to cast (or assigning a device to) a model after quantization will throw an error.
Checks also if other models are casted correctly.
"""
# This should work
if self.device_map is None:
_ = self.quantized_model.to(0)
with self.assertRaises(ValueError):
# Tries with a `dtype``
self.quantized_model.to(torch.float16)
def test_original_dtype(self):
r"""
A simple test to check if the model succesfully stores the original dtype
"""
self.assertTrue(hasattr(self.quantized_model.config, "_pre_quantization_dtype"))
self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype"))
self.assertTrue(self.quantized_model.config._pre_quantization_dtype == torch.float16)
self.assertTrue(isinstance(self.quantized_model.model.layers[0].mlp.gate_proj, QParamsLinear))
def check_inference_correctness(self, model):
r"""
Test the generation quality of the quantized model and see that we are matching the expected output.
Given that we are operating on small numbers + the testing model is relatively small, we might not get
the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
"""
# Check that inference pass works on the model
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
gen_config = GenerationConfig(
max_new_tokens=15,
min_new_tokens=15,
use_cache=True,
num_beams=1,
do_sample=False,
)
# Check the exactness of the results
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), generation_config=gen_config)
# Get the generation
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
def test_generate_quality(self):
"""
Simple test to check the quality of the model by comparing the generated tokens with the expected tokens
"""
if self.device_map is None:
self.check_inference_correctness(self.quantized_model.to(0))
else:
self.check_inference_correctness(self.quantized_model)
@require_accelerate
@require_torch_multi_gpu
@require_quark
class QuarkTestDeviceMap(QuarkTest):
device_map = "auto"