transformers/tests/utils/test_cache_utils.py
Arthur 19d58d31f1
Add MLLama (#33703)
* current changes

* nit

* Add cross_attenttion_mask to processor

* multi-image fixed

* Add cross_attenttion_mask to processor

* cross attn works in all cases

* WIP refactoring function for image processor

* WIP refactoring image processor functions

* Refactor preprocess to use global loops instead of list nested list comps

* Docstrings

* Add channels unification

* fix dtype issues

* Update docsrings and format

* Consistent max_image_tiles

* current script

* updates

* Add convert to rgb

* Add image processor tests

* updates!

* update

* god damn it I am dumb sometimes

* Precompute aspect ratios

* now this works, full match

* fix 😉

* nits

* style

* fix model and conversion

* nit

* nit

* kinda works

* hack for sdpa non-contiguous bias

* nits here and there

* latest c hanges

* merge?

* run forward

* Add aspect_ratio_mask

* vision attention mask

* update script and config variable names

* nit

* nits

* be able to load

* style

* nits

* there

* nits

* make forward run

* small update

* enable generation multi-turn

* nit

* nit

* Clean up a bit for errors and typos

* A bit more constant fixes

* 90B keys and shapes match

* Fix for 11B model

* Fixup, remove debug part

* Docs

* Make max_aspect_ratio_id to be minimal

* Update image processing code to match new implementation

* Adjust conversion for final checkpoint state

* Change dim in repeat_interleave (accordig to meta code)

* tmp fix for num_tiles

* Fix for conversion (gate<->up, q/k_proj rope permute)

* nits

* codestyle

* Vision encoder fixes

* pass cross attn mask further

* Refactor aspect ratio mask

* Disable text-only generation

* Fix cross attention layers order, remove q/k norm rotation for cross atention layers

* Refactor gated position embeddings

* fix bugs but needs test with new weights

* rope scaling should be llama3

* Fix rope scaling name

* Remove debug for linear layer

* fix copies

* Make mask prepare private func

* Remove linear patch embed

* Make precomputed embeddings as nn.Embedding module

* MllamaPrecomputedAspectRatioEmbedding with config init

* Remove unused self.output_dim

* nit, intermediate layers

* Rename ln and pos_embed

* vision_chunk_size -> image_size

* return_intermediate -> intermediate_layers_indices

* vision_input_dim -> hidden_size

* Fix copied from statements

* fix most tests

* Fix more copied from

* layer_id->layer_idx

* Comment

* Fix tests for processor

* Copied from for _prepare_4d_causal_attention_mask_with_cache_position

* Style fix

* Add MllamaForCausalLM

* WIP fixing tests

* Remove duplicated layers

* Remove dummy file

* Fix style

* Fix consistency

* Fix some TODOs

* fix language_model instantiation, add docstring

* Move docstring, remove todos for precomputed embeds (we cannot init them properly)

* Add initial docstrings

* Fix

* fix some tests

* lets skip these

* nits, remove print, style

* Add one more copied from

* Improve test message

* Make validate func private

* Fix dummy objects

* Refactor `data_format` a bit + add comment

* typos/nits

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* fix dummy objects and imports

* Add chat template config json

* remove num_kv_heads from vision attention

* fix

* move some commits and add more tests

* fix test

* Remove `update_key_name` from modeling utils

* remove num-kv-heads again

* some prelimiary docs

* Update chat template + tests

* nit, conversion script max_num_tiles from params

* Fix warning for text-only generation

* Update conversion script for instruct models

* Update chat template in converstion + test

* add tests for CausalLM model

* model_max_length, avoid null chat_template

* Refactor conversion script

* Fix forward

* Fix integration tests

* Refactor vision config + docs

* Fix default

* Refactor text config

* Doc fixes

* Remove unused args, fix docs example

* Squashed commit of the following:

commit b51ce5a2efffbecdefbf6fc92ee87372ec9d8830
Author: qubvel <qubvel@gmail.com>
Date:   Wed Sep 18 13:39:15 2024 +0000

    Move model + add output hidden states and output attentions

* Fix num_channels

* Add mllama text and mllama vision models

* Fixing repo consistency

* Style fix

* Fixing repo consistency

* Fixing unused config params

* Fix failed tests after refactoring

* hidden_activation -> hidden_act  for text mlp

* Remove from_pretrained from sub-configs

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/mllama/convert_mllama_weights_to_hf.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Reuse lambda in conversion script

* Remove run.py

* Update docs/source/en/model_doc/mllama.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/mllama/processing_mllama.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Remove unused LlamaTokenizerFast

* Fix logging

* Refactor gating

* Remove cycle for collecting intermediate states

* Refactor text-only check, add integration test for text-only

* Revert from pretrained to configs

* Fix example

* Add auto `bos_token` adding in processor

* Fix tips

* Update src/transformers/models/auto/tokenization_auto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Enable supports_gradient_checkpointing model flag

* add eager/sdpa options

* don't skip attn tests and bring back GC skips (did i really remove those?)

* Fix signature, but get error with None gradient

* Fix output attention tests

* Disable GC back

* Change no split modules

* Fix dropout

* Style

* Add Mllama to sdpa list

* Add post init for vision model

* Refine config for MllamaForCausalLMModelTest and skipped tests for CausalLM model

* if skipped, say it, don't pass

* Clean vision tester config

* Doc for args

* Update tests/models/mllama/test_modeling_mllama.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add cross_attention_mask to test

* typehint

* Remove todo

* Enable gradient checkpointing

* Docstring

* Style

* Fixing and skipping some tests for new cache

* Mark flaky test

* Skip `test_sdpa_can_compile_dynamic` test

* Fixing some offload tests

* Add direct GenerationMixin inheritance

* Remove unused code

* Add initializer_range to vision config

* update the test to make sure we show if split

* fix gc?

* Fix repo consistency

* Undo modeling utils debug changes

* Fix link

* mllama -> Mllama

* [mllama] -> [Mllama]

* Enable compile test for CausalLM model (text-only)

* Fix TextModel prefix

* Update doc

* Docs for forward, type hints, and vision model prefix

* make sure to reset

* fix init

* small script refactor and styling

* nit

* updates!

* some nits

* Interpolate embeddings for 560 size and update integration tests

* nit

* does not suppor static cache!

* update

* fix

* nit2

* this?

* Fix conversion

* Style

* 4x memory improvement with image cache AFAIK

* Token decorator for tests

* Skip failing tests

* update processor errors

* fix split issues

* style

* weird

* style

* fix failing tests

* update

* nit fixing the whisper tests

* fix path

* update

---------

Co-authored-by: raushan <raushan@huggingface.co>
Co-authored-by: pavel <ubuntu@ip-10-90-0-11.ec2.internal>
Co-authored-by: qubvel <qubvel@gmail.com>
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2024-09-25 19:56:25 +02:00

650 lines
30 KiB
Python

# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import unittest
from parameterized import parameterized
from transformers import set_seed
from transformers.testing_utils import (
is_torch_available,
require_auto_gptq,
require_non_xpu,
require_read_token,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
if is_torch_available():
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
DynamicCache,
GenerationConfig,
GPT2LMHeadModel,
LlamaConfig,
SinkCache,
StaticCache,
convert_and_export_with_cache,
)
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_3
@require_torch
class CacheTest(unittest.TestCase):
def test_dynamic_cache_retrocompatibility(self):
"""Tests that we can convert back and forth between the legacy cache format and DynamicCache"""
legacy_cache = ()
new_cache = DynamicCache(num_hidden_layers=10)
# Creates a new cache with 10 layers in both formats
for layer_idx in range(10):
new_key = torch.rand((2, 4, 8, 16))
new_value = torch.rand((2, 4, 8, 16))
new_cache.update(new_key, new_value, layer_idx)
legacy_cache += ((new_key, new_value),)
# Sanity check 1: they must have the same shapes
self.assertTrue(len(legacy_cache), len(new_cache))
for layer_idx in range(10):
self.assertTrue(len(legacy_cache[layer_idx]), len(legacy_cache[layer_idx]))
for key_value_idx in range(2):
self.assertTrue(
legacy_cache[layer_idx][key_value_idx].shape == new_cache[layer_idx][key_value_idx].shape
)
# Sanity check 2: we can get the sequence length in multiple ways with DynamicCache, and they return the
# expected value
self.assertTrue(legacy_cache[0][0].shape[-2] == new_cache[0][0].shape[-2] == new_cache.get_seq_length() == 8)
# Sanity check 3: they must be equal, and both support indexing
for layer_idx in range(10):
for key_value_idx in range(2):
self.assertTrue(
torch.allclose(new_cache[layer_idx][key_value_idx], legacy_cache[layer_idx][key_value_idx])
)
# Test 1: We can convert from legacy to new with no changes
from_legacy = DynamicCache.from_legacy_cache(legacy_cache, num_hidden_layers=10)
for layer_idx in range(10):
for key_value_idx in range(2):
self.assertTrue(
torch.allclose(from_legacy[layer_idx][key_value_idx], legacy_cache[layer_idx][key_value_idx])
)
# Test 2: We can convert from new to legacy with no changes
to_legacy = new_cache.to_legacy_cache()
for layer_idx in range(10):
for key_value_idx in range(2):
self.assertTrue(
torch.allclose(to_legacy[layer_idx][key_value_idx], new_cache[layer_idx][key_value_idx])
)
def test_reorder_cache_retrocompatibility(self):
"""Tests that Cache.reorder_cache is retrocompatible with the legacy code path"""
legacy_reorder_fn = GPT2LMHeadModel._reorder_cache # An example of a legacy `_reorder_cache` function
legacy_cache = ()
new_cache = DynamicCache(num_hidden_layers=10)
# Creates a new cache with 10 layers in both formats
for layer_idx in range(10):
new_key = torch.rand((4, 4, 8, 16))
new_value = torch.rand((4, 4, 8, 16))
new_cache.update(new_key, new_value, layer_idx)
legacy_cache += ((new_key, new_value),)
# Let's create some dummy beam indices. From the shape above, it is equivalent to the case where num_beams=4
# and batch_size=1
beam_idx = torch.randint(low=0, high=4, size=(4,))
legacy_cache_reordered = legacy_reorder_fn(legacy_cache, beam_idx)
new_cache.reorder_cache(beam_idx)
# Let's check that the results are the same
for layer_idx in range(10):
for key_value_idx in range(2):
self.assertTrue(
torch.allclose(
new_cache[layer_idx][key_value_idx], legacy_cache_reordered[layer_idx][key_value_idx]
)
)
def test_static_cache_mha_mqa_gqa(self):
"""
Tests that static cache works with multi-head attention (MHA), grouped query attention (GQA), and multi-query
attention (MQA)
"""
def _random_kvs(config):
# shape for key and values: (batch_size, num_heads, seq_len, head_dim)
random_keys = torch.rand(
(1, config.num_key_value_heads, 1, config.hidden_size // config.num_attention_heads),
device=torch_device,
)
random_values = torch.rand(
(1, config.num_key_value_heads, 1, config.hidden_size // config.num_attention_heads),
device=torch_device,
)
return random_keys, random_values
mha_config = LlamaConfig(num_attention_heads=32)
mha_static_cache = StaticCache(config=mha_config, batch_size=1, max_cache_len=10, device=torch_device)
cached_keys, cached_values = mha_static_cache.update(
*_random_kvs(mha_config), 0, cache_kwargs={"cache_position": torch.arange(1).to(torch_device)}
)
self.assertTrue(cached_keys.shape == (1, 32, 10, 128))
self.assertTrue(cached_values.shape == (1, 32, 10, 128))
gqa_config = LlamaConfig(num_attention_heads=32, num_key_value_heads=4)
gqa_static_cache = StaticCache(config=gqa_config, batch_size=1, max_cache_len=10, device=torch_device)
cached_keys, cached_values = gqa_static_cache.update(
*_random_kvs(gqa_config), 0, cache_kwargs={"cache_position": torch.arange(1).to(torch_device)}
)
self.assertTrue(cached_keys.shape == (1, 4, 10, 128))
self.assertTrue(cached_values.shape == (1, 4, 10, 128))
mqa_config = LlamaConfig(num_attention_heads=32, num_key_value_heads=1)
mqa_static_cache = StaticCache(config=mqa_config, batch_size=1, max_cache_len=10, device=torch_device)
cached_keys, cached_values = mqa_static_cache.update(
*_random_kvs(mqa_config), 0, cache_kwargs={"cache_position": torch.arange(1).to(torch_device)}
)
self.assertTrue(cached_keys.shape == (1, 1, 10, 128))
self.assertTrue(cached_values.shape == (1, 1, 10, 128))
@slow
@require_read_token
def test_static_cache_exportability(self):
"""
Tests that static cache works with `torch.export()`
"""
if not is_torch_greater_or_equal_than_2_3:
self.skipTest(reason="This test requires torch >= 2.3 to run.")
set_seed(0)
device = "cpu"
dtype = torch.float32
cache_implementation = "static"
attn_implementation = "sdpa" # Export and ExecuTorch only works for SdpaAttention
batch_size = 1
max_cache_len = 1234
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b",
device_map=device,
torch_dtype=dtype,
attn_implementation=attn_implementation,
generation_config=GenerationConfig(
use_cache=True,
cache_implementation=cache_implementation,
max_length=max_cache_len,
cache_config={
"batch_size": batch_size,
"max_cache_len": max_cache_len,
},
),
)
# Check if cache config is passed through correctly
self.assertEqual(model.generation_config.use_cache, True)
self.assertEqual(model.generation_config.cache_implementation, cache_implementation)
self.assertEqual(model.generation_config.max_length, max_cache_len)
self.assertTrue(model.generation_config.cache_config is not None)
self.assertEqual(model.generation_config.cache_config.batch_size, batch_size)
self.assertEqual(model.generation_config.cache_config.max_cache_len, max_cache_len)
exported_program = convert_and_export_with_cache(model)
# Check if the exported model is configured with the `StaticCache` correctly
n_static_key_caches = n_static_value_caches = 0
for buffer_name, buffer in exported_program.named_buffers():
if buffer_name.startswith("static_cache.key_cache"):
self.assertTrue(buffer.shape[0] == batch_size)
self.assertTrue(buffer.shape[2] == max_cache_len)
n_static_key_caches = n_static_key_caches + 1
if buffer_name.startswith("static_cache.value_cache"):
self.assertTrue(buffer.shape[0] == batch_size)
self.assertTrue(buffer.shape[2] == max_cache_len)
n_static_value_caches = n_static_value_caches + 1
self.assertEqual(n_static_key_caches, model.config.num_hidden_layers)
self.assertEqual(n_static_value_caches, model.config.num_hidden_layers)
@require_torch_gpu
@slow
class CacheIntegrationTest(unittest.TestCase):
def test_dynamic_cache_hard(self):
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", padding_side="left")
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16
)
inputs = tokenizer(["Here's everything I know about cats. Cats"], return_tensors="pt").to(model.device)
# DynamicCache and the legacy cache format should be equivalent
set_seed(0)
gen_out_legacy = model.generate(**inputs, do_sample=True, max_new_tokens=256)
set_seed(0)
gen_out = model.generate(
**inputs, do_sample=True, max_new_tokens=256, past_key_values=DynamicCache(model.config.num_hidden_layers)
)
self.assertListEqual(gen_out_legacy.tolist(), gen_out.tolist())
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
expected_text = (
"Here's everything I know about cats. Cats are mysterious creatures. They can't talk, and they don't like "
"to be held. They don't play fetch, and they don't like to be hugged. But they do like to be petted.\n"
"Cats are also very independent. They don't like to be told what to do, and they don't like to be told "
"what to eat. They are also very territorial. They don't like to share their food or their toys.\nCats "
"are also very curious. They like to explore, and they like to play. They are also very fast. They can "
"run very fast, and they can jump very high.\nCats are also very smart. They can learn tricks, and they "
"can solve problems. They are also very playful. They like to play with toys, and they like to play with "
"other cats.\nCats are also very affectionate. They like to be petted, and they like to be held. They "
"also like to be scratched.\nCats are also very clean. They like to groom themselves, and they like to "
"clean their litter box.\nCats are also very independent. They don't"
)
self.assertEqual(decoded[0], expected_text)
def test_dynamic_cache_batched(self):
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16
)
inputs = tokenizer(["A sequence: 1, 2, 3, 4, 5", "A sequence: A, B, C"], padding=True, return_tensors="pt").to(
model.device
)
gen_out = model.generate(
**inputs, do_sample=False, max_new_tokens=10, past_key_values=DynamicCache(model.config.num_hidden_layers)
)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
expected_text = ["A sequence: 1, 2, 3, 4, 5, 6, 7, 8,", "A sequence: A, B, C, D, E, F, G, H"]
self.assertListEqual(decoded, expected_text)
def test_dynamic_cache_beam_search(self):
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", padding_side="left")
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16
)
inputs = tokenizer(["The best color is"], return_tensors="pt").to(model.device)
gen_out = model.generate(
**inputs,
do_sample=False,
max_new_tokens=20,
num_beams=2,
num_return_sequences=2,
)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
expected_text = [
"The best color is the one that makes you feel good.\nThe best color is the one that makes you feel good",
"The best color is the one that suits you.\nThe best color is the one that suits you. The",
]
self.assertListEqual(decoded, expected_text)
def test_hybrid_cache_n_sequences(self):
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-9b",
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="eager",
)
inputs = tokenizer(["Hello I am doing"], return_tensors="pt").to(model.device)
gen_out = model.generate(
**inputs,
do_sample=False,
max_new_tokens=20,
num_return_sequences=2,
)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
expected_text = [
"Hello I am doing a project on the 1918 flu pandemic and I am trying to find out how many",
"Hello I am doing a project on the 1918 flu pandemic and I am trying to find out how many",
]
self.assertListEqual(decoded, expected_text)
@require_non_xpu
@require_auto_gptq
def test_sink_cache_hard(self):
tokenizer = AutoTokenizer.from_pretrained("TheBloke/LLaMa-7B-GPTQ")
model = AutoModelForCausalLM.from_pretrained("TheBloke/LLaMa-7B-GPTQ", device_map="auto")
inputs = tokenizer(["Vaswani et al. (2017) introduced the Transformers"], return_tensors="pt").to(model.device)
# Set up the SinkCache. Using a small window length to contain computational complexity. If this example is run
# without a SinkCache, the last few tokens are gibberish (ends in "of the of the of a of a of")
cache = SinkCache(window_length=508, num_sink_tokens=4)
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=3000, past_key_values=cache)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
self.assertTrue(decoded[0].endswith("to perform a variety of tasks. The Transformer is a neural network"))
def test_sink_cache_iterative_prompts(self):
"""Tests that SinkCache supports more than one new token at once, when shifting the cache"""
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
model = AutoModelForCausalLM.from_pretrained(
"HuggingFaceH4/zephyr-7b-beta", device_map="auto", torch_dtype=torch.float16
)
prompt = (
"Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences "
"and must-see attractions."
)
# Prepare generation settings
cache = SinkCache(window_length=256, num_sink_tokens=4)
input_ids = torch.tensor([], device=model.device, dtype=torch.int)
for _ in range(3):
# Tokenize the prompt with the correct chat template
chat = [{"role": "user", "content": prompt}]
tokenized_chat = tokenizer.apply_chat_template(chat, return_tensors="pt", add_generation_prompt=True).to(
model.device
)
input_ids = torch.cat((input_ids, tokenized_chat), dim=1)
# Perform the generation
gen_out = model.generate(
input_ids, do_sample=False, max_new_tokens=100, past_key_values=cache, use_cache=True
)
input_ids = gen_out
# We went well beyond the cache length
self.assertTrue(input_ids.shape[1] > cache.get_max_length() * 1.5)
# And it still produces a coherent english
decoded = tokenizer.batch_decode(input_ids, skip_special_tokens=True)
last_output = (
"<|assistant|>\nAs the sun began to set over the Pacific Ocean, I found myself standing on the shores of "
"Waikiki Beach, my heart filled with awe and wonder. I had just returned from a two-week journey to the "
"beautiful island of Hawaii, and it had been an unforgettable experience filled with cultural experiences "
"and must-see attractions that left me breathless.\n\nOne of the most memorable experiences of my trip "
"was visiting the historic district of Honolulu. Here,"
)
self.assertTrue(decoded[0].endswith(last_output))
@require_torch_gpu
@parameterized.expand(
[
("eager", "static"),
("sdpa", "static"),
("eager", "offloaded-static"),
("sdpa", "offloaded-static"),
]
)
def test_static_cache_greedy_decoding_pad_left(self, attn_implementation, cache_implementation):
EXPECTED_GENERATION = [
"The best color is the one that complements the skin tone of the",
"We should not undermind the issues at hand.\nWe should not undermind the issues",
]
tokenizer = AutoTokenizer.from_pretrained(
"NousResearch/Llama-2-7b-chat-hf", padding_side="left", pad_token="<s>"
)
model = AutoModelForCausalLM.from_pretrained(
"NousResearch/Llama-2-7b-chat-hf",
torch_dtype=torch.bfloat16,
attn_implementation=attn_implementation,
).to(torch_device)
inputs = tokenizer(
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt"
).to(model.device)
set_seed(0)
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
with self.subTest(f"{attn_implementation}, dynamic"):
self.assertListEqual(decoded, EXPECTED_GENERATION)
set_seed(0)
model.generation_config.cache_implementation = cache_implementation
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
with self.subTest(f"{attn_implementation}, static, eager"):
self.assertListEqual(decoded, EXPECTED_GENERATION)
set_seed(0)
model.forward = torch.compile(model.forward)
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
with self.subTest(f"{attn_implementation}, static, compiled"):
self.assertListEqual(decoded, EXPECTED_GENERATION)
@require_torch_gpu
@parameterized.expand(
[
("eager", "static"),
("sdpa", "static"),
("eager", "offloaded-static"),
("sdpa", "offloaded-static"),
]
)
def test_static_cache_greedy_decoding_pad_right(self, attn_implementation, cache_implementation):
EXPECTED_GENERATION = [
"The best color isЋ the one that complements the skin tone of",
"We should not undermind the issues at hand.\nWe should not undermind the issues",
]
tokenizer = AutoTokenizer.from_pretrained(
"NousResearch/Llama-2-7b-chat-hf", padding_side="right", pad_token="<s>"
)
model = AutoModelForCausalLM.from_pretrained(
"NousResearch/Llama-2-7b-chat-hf",
torch_dtype=torch.bfloat16,
attn_implementation=attn_implementation,
).to(torch_device)
inputs = tokenizer(
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt"
).to(model.device)
set_seed(0)
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
with self.subTest(f"{attn_implementation}, dynamic"):
self.assertListEqual(decoded, EXPECTED_GENERATION)
set_seed(0)
model.generation_config.cache_implementation = cache_implementation
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
with self.subTest(f"{attn_implementation}, static, eager"):
self.assertListEqual(decoded, EXPECTED_GENERATION)
set_seed(0)
model._forward = model.forward
compiled_forward = torch.compile(model.forward)
def compiled(func, input_ids, **kwargs):
return func(input_ids, **kwargs)
def call(input_ids, **kwargs):
if input_ids.shape[-1] == 1:
return compiled(compiled_forward, input_ids, **kwargs)
return model._forward(input_ids, **kwargs)
model.forward = call
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
with self.subTest(f"{attn_implementation}, static, compiled"):
self.assertListEqual(decoded, EXPECTED_GENERATION)
def test_dynamic_cache_extra_left_padding(self):
"""Tests that adding extra left-padding does not affect the generation with the dynamic cache"""
EXPECTED_GENERATION = [
"The best color is the one that complements the skin tone of the",
"We should not undermind the issues at hand.\nWe should not undermind the issues",
]
tokenizer = AutoTokenizer.from_pretrained(
"NousResearch/Llama-2-7b-chat-hf", padding_side="left", pad_token="<s>"
)
model = AutoModelForCausalLM.from_pretrained(
"NousResearch/Llama-2-7b-chat-hf",
torch_dtype=torch.bfloat16,
).to(torch_device)
inputs = tokenizer(
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt"
).to(model.device)
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
self.assertListEqual(decoded, EXPECTED_GENERATION)
# Now with extra left-padding
inputs_expanded = tokenizer(
["The best color is", "We should not undermind the issues at hand"],
padding=True,
return_tensors="pt",
pad_to_multiple_of=32,
).to(model.device)
self.assertTrue(inputs.input_ids.shape[1] < inputs_expanded.input_ids.shape[1])
gen_out = model.generate(**inputs_expanded, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
self.assertListEqual(decoded, EXPECTED_GENERATION)
@parameterized.expand(
[
"static",
"offloaded-static",
]
)
def test_static_cache_extra_left_padding(self, cache_implementation):
"""Tests that adding extra left-padding does not affect the generation with the static cache"""
EXPECTED_GENERATION = [
"The best color is the one that complements the skin tone of the",
"We should not undermind the issues at hand.\nWe should not undermind the issues",
]
tokenizer = AutoTokenizer.from_pretrained(
"NousResearch/Llama-2-7b-chat-hf", padding_side="left", pad_token="<s>"
)
model = AutoModelForCausalLM.from_pretrained(
"NousResearch/Llama-2-7b-chat-hf",
torch_dtype=torch.bfloat16,
).to(torch_device)
inputs = tokenizer(
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt"
).to(model.device)
model.generation_config.cache_implementation = cache_implementation
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
self.assertListEqual(decoded, EXPECTED_GENERATION)
# Now with extra left-padding
inputs_expanded = tokenizer(
["The best color is", "We should not undermind the issues at hand"],
padding=True,
return_tensors="pt",
pad_to_multiple_of=32,
).to(model.device)
self.assertTrue(inputs.input_ids.shape[1] < inputs_expanded.input_ids.shape[1])
gen_out = model.generate(**inputs_expanded, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
self.assertListEqual(decoded, EXPECTED_GENERATION)
@unittest.skip(reason="TODO @gante static cache's does not support beam search yet")
def test_static_cache_beam_search(self):
pass
@require_torch_gpu
def test_offloaded_cache_equivalent_to_dynamic_cache(self):
"""Tests that OffloadedCache produces the same result as the default DynamicCache"""
model_name = "microsoft/Phi-3-mini-4k-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
device = model.device
input_text = "Fun fact:"
inputs = tokenizer(input_text, return_tensors="pt").to(device)
common = {
"num_beams": 4,
"num_beam_groups": 2,
"num_return_sequences": 4,
"diversity_penalty": 1.0,
"max_new_tokens": 20,
"early_stopping": True,
}
original = GenerationConfig(**common)
offloaded = GenerationConfig(cache_implementation="offloaded", **common)
original_outputs = model.generate(generation_config=original, **inputs)
offloaded_outputs = model.generate(generation_config=offloaded, **inputs)
for original_output, offloaded_output in zip(original_outputs, offloaded_outputs):
assert torch.all(original_output == offloaded_output).item()
@require_torch_gpu
def test_offloaded_cache_uses_less_memory_than_dynamic_cache(self):
"""Tests that OffloadedCache uses less memory than the default DynamicCache"""
model_name = "microsoft/Phi-3-mini-4k-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
device = model.device
input_text = "Fun fact:"
inputs = tokenizer(input_text, return_tensors="pt").to(device)
common = {
"num_beams": 4,
"num_beam_groups": 2,
"num_return_sequences": 4,
"diversity_penalty": 1.0,
"max_new_tokens": 20,
"early_stopping": True,
}
original = GenerationConfig(**common)
offloaded = GenerationConfig(cache_implementation="offloaded", **common)
torch.cuda.reset_peak_memory_stats(device)
model.generate(generation_config=original, **inputs)
original_peak_memory = torch.cuda.max_memory_allocated(device)
torch.cuda.reset_peak_memory_stats(device)
model.generate(generation_config=offloaded, **inputs)
offloaded_peak_memory = torch.cuda.max_memory_allocated(device)
assert offloaded_peak_memory < original_peak_memory
@require_torch_gpu
def test_cache_copy(self):
model_name = "microsoft/Phi-3-mini-4k-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cuda", torch_dtype=torch.bfloat16)
prompt_cache = StaticCache(
config=model.config, max_batch_size=1, max_cache_len=1024, device="cuda", dtype=torch.bfloat16
)
INITIAL_PROMPT = "You are a helpful assistant. "
inputs_initial_prompt = tokenizer(INITIAL_PROMPT, return_tensors="pt").to("cuda")
# This is the common prompt cached, we need to run forward without grad to be abel to copy
with torch.no_grad():
prompt_cache = model(**inputs_initial_prompt, past_key_values=prompt_cache).past_key_values
prompts = ["Help me to write a blogpost about travelling.", "What is the capital of France?"]
responses = []
for prompt in prompts:
new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors="pt").to("cuda")
past_key_values = copy.deepcopy(prompt_cache)
outputs = model.generate(**new_inputs, past_key_values=past_key_values, max_new_tokens=40)
response = tokenizer.batch_decode(outputs)[0]
responses.append(response)
EXPECTED_DECODED_TEXT = [
"You are a helpful assistant. Help me to write a blogpost about travelling.\n\nTraveling is an enriching experience that broadens our horizons and exposes us to new cultures, landscapes, and people. Whether it's a week",
'You are a helpful assistant. What is the capital of France?\n\n\n## Response:Paris is the capital of France.\n\n\n\n\n\n## Query:\n\nIn a detailed analysis, compare the economic impacts of the introduction of the'
] # fmt: skip
self.assertTrue(responses == EXPECTED_DECODED_TEXT)