transformers/tests/models/megatron_gpt2/test_modeling_megatron_gpt2.py
Yih-Dar 19420fd99e
Move test model folders (#17034)
* move test model folders (TODO: fix imports and others)

* fix (potentially partially) imports (in model test modules)

* fix (potentially partially) imports (in tokenization test modules)

* fix (potentially partially) imports (in feature extraction test modules)

* fix import utils.test_modeling_tf_core

* fix path ../fixtures/

* fix imports about generation.test_generation_flax_utils

* fix more imports

* fix fixture path

* fix get_test_dir

* update module_to_test_file

* fix get_tests_dir from wrong transformers.utils

* update config.yml (CircleCI)

* fix style

* remove missing imports

* update new model script

* update check_repo

* update SPECIAL_MODULE_TO_TEST_MAP

* fix style

* add __init__

* update self-scheduled

* fix add_new_model scripts

* check one way to get location back

* python setup.py build install

* fix import in test auto

* update self-scheduled.yml

* update slack notification script

* Add comments about artifact names

* fix for yolos

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-03 14:42:02 +02:00

86 lines
2.6 KiB
Python

# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
import torch
from transformers import GPT2LMHeadModel
@require_torch
@require_sentencepiece
@require_tokenizers
class MegatronGPT2IntegrationTest(unittest.TestCase):
@slow
@unittest.skip("Model is not available.")
def test_inference_no_head(self):
directory = "nvidia/megatron-gpt2-345m/"
if "MYDIR" in os.environ:
directory = os.path.join(os.environ["MYDIR"], directory)
model = GPT2LMHeadModel.from_pretrained(directory)
model.to(torch_device)
model.half()
input_ids = torch.tensor(
[[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]],
device=torch_device,
dtype=torch.long,
)
with torch.no_grad():
output = model(input_ids).logits
expected_shape = torch.Size((1, 9, 50257))
self.assertEqual(output.shape, expected_shape)
expected_diag = torch.tensor(
[
4.9414,
-0.2920,
-1.2148,
-4.0273,
-0.5161,
-5.2109,
-1.2412,
-1.8301,
-1.7734,
-4.7148,
-0.2317,
-1.0811,
-2.1777,
0.4141,
-3.7969,
-4.0586,
-2.5332,
-3.3809,
4.3867,
],
device=torch_device,
dtype=torch.half,
)
for i in range(19):
r, c = 8 * i // 17, 2792 * i # along the diagonal
computed, expected = output[0, r, c], expected_diag[i]
msg = f"row={r} col={c} computed={computed} expected={expected}"
self.assertAlmostEqual(computed, expected, delta=1e-4, msg=msg)