mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-15 10:38:23 +06:00

* Add index to be returned by NerPipeline to allow for the creation of * Add entity groups * Convert entity list to dict * Add entity to entity_group_disagg atfter updating entity gorups * Change 'group' parameter to 'grouped_entities' * Add unit tests for grouped NER pipeline case * Correct variable name typo for NER_FINETUNED_MODELS * Sync grouped tests to recent test updates
397 lines
17 KiB
Python
397 lines
17 KiB
Python
import unittest
|
|
from typing import Iterable, List, Optional
|
|
|
|
from transformers import pipeline
|
|
from transformers.pipelines import SUPPORTED_TASKS, DefaultArgumentHandler, Pipeline
|
|
|
|
from .utils import require_tf, require_torch, slow
|
|
|
|
|
|
NER_FINETUNED_MODELS = ["sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"]
|
|
|
|
# xlnet-base-cased disabled for now, since it crashes TF2
|
|
FEATURE_EXTRACT_FINETUNED_MODELS = ["sshleifer/tiny-distilbert-base-cased"]
|
|
TEXT_CLASSIF_FINETUNED_MODELS = ["sshleifer/tiny-distilbert-base-uncased-finetuned-sst-2-english"]
|
|
TEXT_GENERATION_FINETUNED_MODELS = ["sshleifer/tiny-ctrl"]
|
|
|
|
FILL_MASK_FINETUNED_MODELS = ["sshleifer/tiny-distilroberta-base"]
|
|
LARGE_FILL_MASK_FINETUNED_MODELS = ["distilroberta-base"] # @slow
|
|
|
|
SUMMARIZATION_FINETUNED_MODELS = ["sshleifer/bart-tiny-random", "patrickvonplaten/t5-tiny-random"]
|
|
TF_SUMMARIZATION_FINETUNED_MODELS = ["patrickvonplaten/t5-tiny-random"]
|
|
|
|
TRANSLATION_FINETUNED_MODELS = [
|
|
("patrickvonplaten/t5-tiny-random", "translation_en_to_de"),
|
|
("patrickvonplaten/t5-tiny-random", "translation_en_to_ro"),
|
|
]
|
|
TF_TRANSLATION_FINETUNED_MODELS = [("patrickvonplaten/t5-tiny-random", "translation_en_to_fr")]
|
|
|
|
expected_fill_mask_result = [
|
|
[
|
|
{"sequence": "<s> My name is:</s>", "score": 0.009954338893294334, "token": 35},
|
|
{"sequence": "<s> My name is John</s>", "score": 0.0080940006300807, "token": 610},
|
|
],
|
|
[
|
|
{"sequence": "<s> The largest city in France is Paris</s>", "score": 0.3185044229030609, "token": 2201},
|
|
{"sequence": "<s> The largest city in France is Lyon</s>", "score": 0.21112334728240967, "token": 12790},
|
|
],
|
|
]
|
|
|
|
|
|
class DefaultArgumentHandlerTestCase(unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
self.handler = DefaultArgumentHandler()
|
|
|
|
def test_kwargs_x(self):
|
|
mono_data = {"X": "This is a sample input"}
|
|
mono_args = self.handler(**mono_data)
|
|
|
|
self.assertTrue(isinstance(mono_args, list))
|
|
self.assertEqual(len(mono_args), 1)
|
|
|
|
multi_data = {"x": ["This is a sample input", "This is a second sample input"]}
|
|
multi_args = self.handler(**multi_data)
|
|
|
|
self.assertTrue(isinstance(multi_args, list))
|
|
self.assertEqual(len(multi_args), 2)
|
|
|
|
def test_kwargs_data(self):
|
|
mono_data = {"data": "This is a sample input"}
|
|
mono_args = self.handler(**mono_data)
|
|
|
|
self.assertTrue(isinstance(mono_args, list))
|
|
self.assertEqual(len(mono_args), 1)
|
|
|
|
multi_data = {"data": ["This is a sample input", "This is a second sample input"]}
|
|
multi_args = self.handler(**multi_data)
|
|
|
|
self.assertTrue(isinstance(multi_args, list))
|
|
self.assertEqual(len(multi_args), 2)
|
|
|
|
def test_multi_kwargs(self):
|
|
mono_data = {"data": "This is a sample input", "X": "This is a sample input 2"}
|
|
mono_args = self.handler(**mono_data)
|
|
|
|
self.assertTrue(isinstance(mono_args, list))
|
|
self.assertEqual(len(mono_args), 2)
|
|
|
|
multi_data = {
|
|
"data": ["This is a sample input", "This is a second sample input"],
|
|
"test": ["This is a sample input 2", "This is a second sample input 2"],
|
|
}
|
|
multi_args = self.handler(**multi_data)
|
|
|
|
self.assertTrue(isinstance(multi_args, list))
|
|
self.assertEqual(len(multi_args), 4)
|
|
|
|
def test_args(self):
|
|
mono_data = "This is a sample input"
|
|
mono_args = self.handler(mono_data)
|
|
|
|
self.assertTrue(isinstance(mono_args, list))
|
|
self.assertEqual(len(mono_args), 1)
|
|
|
|
mono_data = ["This is a sample input"]
|
|
mono_args = self.handler(mono_data)
|
|
|
|
self.assertTrue(isinstance(mono_args, list))
|
|
self.assertEqual(len(mono_args), 1)
|
|
|
|
multi_data = ["This is a sample input", "This is a second sample input"]
|
|
multi_args = self.handler(multi_data)
|
|
|
|
self.assertTrue(isinstance(multi_args, list))
|
|
self.assertEqual(len(multi_args), 2)
|
|
|
|
multi_data = ["This is a sample input", "This is a second sample input"]
|
|
multi_args = self.handler(*multi_data)
|
|
|
|
self.assertTrue(isinstance(multi_args, list))
|
|
self.assertEqual(len(multi_args), 2)
|
|
|
|
|
|
class MonoColumnInputTestCase(unittest.TestCase):
|
|
def _test_mono_column_pipeline(
|
|
self,
|
|
nlp: Pipeline,
|
|
valid_inputs: List,
|
|
output_keys: Iterable[str],
|
|
invalid_inputs: List = [None],
|
|
expected_multi_result: Optional[List] = None,
|
|
expected_check_keys: Optional[List[str]] = None,
|
|
):
|
|
self.assertIsNotNone(nlp)
|
|
|
|
mono_result = nlp(valid_inputs[0])
|
|
self.assertIsInstance(mono_result, list)
|
|
self.assertIsInstance(mono_result[0], (dict, list))
|
|
|
|
if isinstance(mono_result[0], list):
|
|
mono_result = mono_result[0]
|
|
|
|
for key in output_keys:
|
|
self.assertIn(key, mono_result[0])
|
|
|
|
multi_result = [nlp(input) for input in valid_inputs]
|
|
self.assertIsInstance(multi_result, list)
|
|
self.assertIsInstance(multi_result[0], (dict, list))
|
|
|
|
if expected_multi_result is not None:
|
|
for result, expect in zip(multi_result, expected_multi_result):
|
|
for key in expected_check_keys or []:
|
|
self.assertEqual(
|
|
set([o[key] for o in result]), set([o[key] for o in expect]),
|
|
)
|
|
|
|
if isinstance(multi_result[0], list):
|
|
multi_result = multi_result[0]
|
|
|
|
for result in multi_result:
|
|
for key in output_keys:
|
|
self.assertIn(key, result)
|
|
|
|
self.assertRaises(Exception, nlp, invalid_inputs)
|
|
|
|
@require_torch
|
|
def test_torch_ner(self):
|
|
mandatory_keys = {"entity", "word", "score"}
|
|
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
|
|
for model_name in NER_FINETUNED_MODELS:
|
|
nlp = pipeline(task="ner", model=model_name, tokenizer=model_name)
|
|
self._test_mono_column_pipeline(nlp, valid_inputs, mandatory_keys)
|
|
|
|
@require_torch
|
|
def test_ner_grouped(self):
|
|
mandatory_keys = {"entity_group", "word", "score"}
|
|
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
|
|
for model_name in NER_FINETUNED_MODELS:
|
|
nlp = pipeline(task="ner", model=model_name, tokenizer=model_name, grouped_entities=True)
|
|
self._test_mono_column_pipeline(nlp, valid_inputs, mandatory_keys)
|
|
|
|
@require_tf
|
|
def test_tf_ner(self):
|
|
mandatory_keys = {"entity", "word", "score"}
|
|
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
|
|
for model_name in NER_FINETUNED_MODELS:
|
|
nlp = pipeline(task="ner", model=model_name, tokenizer=model_name, framework="tf")
|
|
self._test_mono_column_pipeline(nlp, valid_inputs, mandatory_keys)
|
|
|
|
@require_tf
|
|
def test_tf_ner_grouped(self):
|
|
mandatory_keys = {"entity_group", "word", "score"}
|
|
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
|
|
for model_name in NER_FINETUNED_MODELS:
|
|
nlp = pipeline(task="ner", model=model_name, tokenizer=model_name, framework="tf", grouped_entities=True)
|
|
self._test_mono_column_pipeline(nlp, valid_inputs, mandatory_keys)
|
|
|
|
@require_torch
|
|
def test_torch_sentiment_analysis(self):
|
|
mandatory_keys = {"label", "score"}
|
|
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
|
|
for model_name in TEXT_CLASSIF_FINETUNED_MODELS:
|
|
nlp = pipeline(task="sentiment-analysis", model=model_name, tokenizer=model_name)
|
|
self._test_mono_column_pipeline(nlp, valid_inputs, mandatory_keys)
|
|
|
|
@require_tf
|
|
def test_tf_sentiment_analysis(self):
|
|
mandatory_keys = {"label", "score"}
|
|
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
|
|
for model_name in TEXT_CLASSIF_FINETUNED_MODELS:
|
|
nlp = pipeline(task="sentiment-analysis", model=model_name, tokenizer=model_name, framework="tf")
|
|
self._test_mono_column_pipeline(nlp, valid_inputs, mandatory_keys)
|
|
|
|
@require_torch
|
|
def test_torch_feature_extraction(self):
|
|
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
|
|
for model_name in FEATURE_EXTRACT_FINETUNED_MODELS:
|
|
nlp = pipeline(task="feature-extraction", model=model_name, tokenizer=model_name)
|
|
self._test_mono_column_pipeline(nlp, valid_inputs, {})
|
|
|
|
@require_tf
|
|
def test_tf_feature_extraction(self):
|
|
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
|
|
for model_name in FEATURE_EXTRACT_FINETUNED_MODELS:
|
|
nlp = pipeline(task="feature-extraction", model=model_name, tokenizer=model_name, framework="tf")
|
|
self._test_mono_column_pipeline(nlp, valid_inputs, {})
|
|
|
|
@require_torch
|
|
def test_torch_fill_mask(self):
|
|
mandatory_keys = {"sequence", "score", "token"}
|
|
valid_inputs = [
|
|
"My name is <mask>",
|
|
"The largest city in France is <mask>",
|
|
]
|
|
for model_name in FILL_MASK_FINETUNED_MODELS:
|
|
nlp = pipeline(task="fill-mask", model=model_name, tokenizer=model_name, framework="pt", topk=2,)
|
|
self._test_mono_column_pipeline(nlp, valid_inputs, mandatory_keys, expected_check_keys=["sequence"])
|
|
|
|
@require_tf
|
|
def test_tf_fill_mask(self):
|
|
mandatory_keys = {"sequence", "score", "token"}
|
|
valid_inputs = [
|
|
"My name is <mask>",
|
|
"The largest city in France is <mask>",
|
|
]
|
|
for model_name in FILL_MASK_FINETUNED_MODELS:
|
|
nlp = pipeline(task="fill-mask", model=model_name, tokenizer=model_name, framework="tf", topk=2,)
|
|
self._test_mono_column_pipeline(nlp, valid_inputs, mandatory_keys, expected_check_keys=["sequence"])
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_torch_fill_mask_results(self):
|
|
mandatory_keys = {"sequence", "score", "token"}
|
|
valid_inputs = [
|
|
"My name is <mask>",
|
|
"The largest city in France is <mask>",
|
|
]
|
|
for model_name in LARGE_FILL_MASK_FINETUNED_MODELS:
|
|
nlp = pipeline(task="fill-mask", model=model_name, tokenizer=model_name, framework="pt", topk=2,)
|
|
self._test_mono_column_pipeline(
|
|
nlp,
|
|
valid_inputs,
|
|
mandatory_keys,
|
|
expected_multi_result=expected_fill_mask_result,
|
|
expected_check_keys=["sequence"],
|
|
)
|
|
|
|
@require_tf
|
|
@slow
|
|
def test_tf_fill_mask_results(self):
|
|
mandatory_keys = {"sequence", "score", "token"}
|
|
valid_inputs = [
|
|
"My name is <mask>",
|
|
"The largest city in France is <mask>",
|
|
]
|
|
for model_name in LARGE_FILL_MASK_FINETUNED_MODELS:
|
|
nlp = pipeline(task="fill-mask", model=model_name, tokenizer=model_name, framework="tf", topk=2)
|
|
self._test_mono_column_pipeline(
|
|
nlp,
|
|
valid_inputs,
|
|
mandatory_keys,
|
|
expected_multi_result=expected_fill_mask_result,
|
|
expected_check_keys=["sequence"],
|
|
)
|
|
|
|
@require_torch
|
|
def test_torch_summarization(self):
|
|
valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
|
|
invalid_inputs = [4, "<mask>"]
|
|
mandatory_keys = ["summary_text"]
|
|
for model in SUMMARIZATION_FINETUNED_MODELS:
|
|
nlp = pipeline(task="summarization", model=model, tokenizer=model)
|
|
self._test_mono_column_pipeline(nlp, valid_inputs, mandatory_keys, invalid_inputs=invalid_inputs)
|
|
|
|
@require_tf
|
|
def test_tf_summarization(self):
|
|
valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
|
|
invalid_inputs = [4, "<mask>"]
|
|
mandatory_keys = ["summary_text"]
|
|
for model_name in TF_SUMMARIZATION_FINETUNED_MODELS:
|
|
nlp = pipeline(task="summarization", model=model_name, tokenizer=model_name, framework="tf",)
|
|
self._test_mono_column_pipeline(nlp, valid_inputs, mandatory_keys, invalid_inputs=invalid_inputs)
|
|
|
|
@require_torch
|
|
def test_torch_translation(self):
|
|
valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
|
|
invalid_inputs = [4, "<mask>"]
|
|
mandatory_keys = ["translation_text"]
|
|
for model_name, task in TRANSLATION_FINETUNED_MODELS:
|
|
nlp = pipeline(task=task, model=model_name, tokenizer=model_name)
|
|
self._test_mono_column_pipeline(nlp, valid_inputs, mandatory_keys, invalid_inputs)
|
|
|
|
@require_tf
|
|
@slow
|
|
def test_tf_translation(self):
|
|
valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
|
|
invalid_inputs = [4, "<mask>"]
|
|
mandatory_keys = ["translation_text"]
|
|
for model, task in TF_TRANSLATION_FINETUNED_MODELS:
|
|
nlp = pipeline(task=task, model=model, tokenizer=model, framework="tf")
|
|
self._test_mono_column_pipeline(nlp, valid_inputs, mandatory_keys, invalid_inputs=invalid_inputs)
|
|
|
|
@require_torch
|
|
def test_torch_text_generation(self):
|
|
valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
|
|
for model_name in TEXT_GENERATION_FINETUNED_MODELS:
|
|
nlp = pipeline(task="text-generation", model=model_name, tokenizer=model_name, framework="pt")
|
|
self._test_mono_column_pipeline(nlp, valid_inputs, {})
|
|
|
|
@require_tf
|
|
def test_tf_text_generation(self):
|
|
valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
|
|
for model_name in TEXT_GENERATION_FINETUNED_MODELS:
|
|
nlp = pipeline(task="text-generation", model=model_name, tokenizer=model_name, framework="tf")
|
|
self._test_mono_column_pipeline(nlp, valid_inputs, {})
|
|
|
|
|
|
QA_FINETUNED_MODELS = ["sshleifer/tiny-distilbert-base-cased-distilled-squad"]
|
|
|
|
|
|
class QAPipelineTests(unittest.TestCase):
|
|
def _test_qa_pipeline(self, nlp):
|
|
output_keys = {"score", "answer", "start", "end"}
|
|
valid_inputs = [
|
|
{"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
|
|
{
|
|
"question": "In what field is HuggingFace working ?",
|
|
"context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
|
|
},
|
|
]
|
|
invalid_inputs = [
|
|
{"question": "", "context": "This is a test to try empty question edge case"},
|
|
{"question": None, "context": "This is a test to try empty question edge case"},
|
|
{"question": "What is does with empty context ?", "context": ""},
|
|
{"question": "What is does with empty context ?", "context": None},
|
|
]
|
|
self.assertIsNotNone(nlp)
|
|
|
|
mono_result = nlp(valid_inputs[0])
|
|
self.assertIsInstance(mono_result, dict)
|
|
|
|
for key in output_keys:
|
|
self.assertIn(key, mono_result)
|
|
|
|
multi_result = nlp(valid_inputs)
|
|
self.assertIsInstance(multi_result, list)
|
|
self.assertIsInstance(multi_result[0], dict)
|
|
|
|
for result in multi_result:
|
|
for key in output_keys:
|
|
self.assertIn(key, result)
|
|
for bad_input in invalid_inputs:
|
|
self.assertRaises(Exception, nlp, bad_input)
|
|
self.assertRaises(Exception, nlp, invalid_inputs)
|
|
|
|
@require_torch
|
|
def test_torch_question_answering(self):
|
|
for model_name in QA_FINETUNED_MODELS:
|
|
nlp = pipeline(task="question-answering", model=model_name, tokenizer=model_name)
|
|
self._test_qa_pipeline(nlp)
|
|
|
|
@require_tf
|
|
def test_tf_question_answering(self):
|
|
for model_name in QA_FINETUNED_MODELS:
|
|
nlp = pipeline(task="question-answering", model=model_name, tokenizer=model_name, framework="tf")
|
|
self._test_qa_pipeline(nlp)
|
|
|
|
|
|
class PipelineCommonTests(unittest.TestCase):
|
|
|
|
pipelines = SUPPORTED_TASKS.keys()
|
|
|
|
@slow
|
|
@require_tf
|
|
def test_tf_defaults(self):
|
|
# Test that pipelines can be correctly loaded without any argument
|
|
for task in self.pipelines:
|
|
with self.subTest(msg="Testing TF defaults with TF and {}".format(task)):
|
|
pipeline(task, framework="tf")
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_pt_defaults(self):
|
|
# Test that pipelines can be correctly loaded without any argument
|
|
for task in self.pipelines:
|
|
with self.subTest(msg="Testing Torch defaults with PyTorch and {}".format(task)):
|
|
pipeline(task, framework="pt")
|