mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00
885 lines
42 KiB
Python
885 lines
42 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Glm model."""
|
|
|
|
import inspect
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from parameterized import parameterized
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GlmConfig, is_torch_available
|
|
from transformers.testing_utils import (
|
|
is_flaky,
|
|
require_flash_attn,
|
|
require_torch,
|
|
require_torch_accelerator,
|
|
require_torch_gpu,
|
|
require_torch_sdpa,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import is_torch_bf16_available_on_device, is_torch_fp16_available_on_device
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
GlmForCausalLM,
|
|
GlmForSequenceClassification,
|
|
GlmForTokenClassification,
|
|
GlmModel,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
class GlmModelTester:
|
|
config_class = GlmConfig
|
|
if is_torch_available():
|
|
model_class = GlmModel
|
|
for_causal_lm_class = GlmForCausalLM
|
|
for_sequence_class = GlmForSequenceClassification
|
|
for_token_class = GlmForTokenClassification
|
|
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_token_type_ids=False,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
num_key_value_heads=2,
|
|
intermediate_size=37,
|
|
hidden_act="silu",
|
|
attention_dropout=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
pad_token_id=0,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.attention_dropout = attention_dropout
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.pad_token_id = pad_token_id
|
|
self.scope = scope
|
|
self.head_dim = self.hidden_size // self.num_attention_heads
|
|
|
|
# Copied from tests.models.mistral.test_modeling_mistral.MistralModelTester.prepare_config_and_inputs
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def get_config(self):
|
|
return self.config_class(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
num_key_value_heads=self.num_key_value_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
attention_dropout=self.attention_dropout,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
initializer_range=self.initializer_range,
|
|
pad_token_id=self.pad_token_id,
|
|
head_dim=self.head_dim,
|
|
)
|
|
|
|
def create_and_check_model(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = self.model_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_model_as_decoder(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
):
|
|
model = self.model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
)
|
|
result = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
)
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_for_causal_lm(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
):
|
|
model = self.for_causal_lm_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_decoder_model_past_large_inputs(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
):
|
|
model = self.for_causal_lm_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
# first forward pass
|
|
outputs = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
use_cache=True,
|
|
)
|
|
past_key_values = outputs.past_key_values
|
|
|
|
# create hypothetical multiple next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
|
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
|
|
|
# append to next input_ids and
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
|
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
|
|
|
output_from_no_past = model(
|
|
next_input_ids,
|
|
attention_mask=next_attention_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
output_hidden_states=True,
|
|
)["hidden_states"][0]
|
|
output_from_past = model(
|
|
next_tokens,
|
|
attention_mask=next_attention_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
past_key_values=past_key_values,
|
|
output_hidden_states=True,
|
|
)["hidden_states"][0]
|
|
|
|
# select random slice
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
|
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
|
|
|
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
|
|
|
# test that outputs are equal for slice
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
|
|
|
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->Glm
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class GlmModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(GlmModel, GlmForCausalLM, GlmForSequenceClassification, GlmForTokenClassification)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
all_generative_model_classes = (GlmForCausalLM,) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": GlmModel,
|
|
"text-classification": GlmForSequenceClassification,
|
|
"token-classification": GlmForTokenClassification,
|
|
"text-generation": GlmForCausalLM,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
|
|
# used in `test_torch_compile`
|
|
_torch_compile_test_ckpt = "THUDM/glm-4-9b"
|
|
_torch_compile_test_revision = "refs/pr/15"
|
|
|
|
def setUp(self):
|
|
self.model_tester = GlmModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=GlmConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_model_various_embeddings(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
for type in ["absolute", "relative_key", "relative_key_query"]:
|
|
config_and_inputs[0].position_embedding_type = type
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_Glm_sequence_classification_model(self):
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
print(config)
|
|
config.num_labels = 3
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
|
|
model = self.model_tester.for_sequence_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
|
|
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
|
|
|
|
def test_Glm_sequence_classification_model_for_single_label(self):
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.num_labels = 3
|
|
config.problem_type = "single_label_classification"
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
|
|
model = self.model_tester.for_sequence_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
|
|
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
|
|
|
|
def test_Glm_sequence_classification_model_for_multi_label(self):
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.num_labels = 3
|
|
config.problem_type = "multi_label_classification"
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
sequence_labels = ids_tensor(
|
|
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
|
|
).to(torch.float)
|
|
model = self.model_tester.for_sequence_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
|
|
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
|
|
|
|
def test_Glm_token_classification_model(self):
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.num_labels = 3
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
token_labels = ids_tensor([self.model_tester.batch_size, self.model_tester.seq_length], config.num_labels)
|
|
model = self.model_tester.for_token_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=attention_mask, labels=token_labels)
|
|
self.assertEqual(
|
|
result.logits.shape,
|
|
(self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.num_labels),
|
|
)
|
|
|
|
@unittest.skip(reason="Glm uses GQA on all models so the KV cache is a non standard format")
|
|
def test_past_key_values_format(self):
|
|
pass
|
|
|
|
@is_flaky()
|
|
def test_custom_4d_attention_mask(self):
|
|
"""Overwrite the common test to use atol=1e-3 instead of 1e-4. Can still rarely fail, thus flaky."""
|
|
for model_class in self.all_generative_model_classes:
|
|
if not model_class._supports_static_cache:
|
|
self.skipTest(f"{model_class.__name__} is not guaranteed to work with custom 4D attention masks")
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
if getattr(config, "sliding_window", 0) is not None and getattr(config, "sliding_window", 0) > 0:
|
|
self.skipTest(f"{model_class.__name__} with sliding window attention is not supported by this test")
|
|
model = model_class(config).to(device=torch_device, dtype=torch.float32)
|
|
|
|
(
|
|
input_ids,
|
|
position_ids,
|
|
input_ids_shared_prefix,
|
|
mask_shared_prefix,
|
|
position_ids_shared_prefix,
|
|
) = self._get_custom_4d_mask_test_data()
|
|
|
|
logits = model.forward(input_ids, position_ids=position_ids).logits
|
|
# logits.shape == torch.Size([3, 4, ...])
|
|
|
|
logits_shared_prefix = model(
|
|
input_ids_shared_prefix,
|
|
attention_mask=mask_shared_prefix,
|
|
position_ids=position_ids_shared_prefix,
|
|
)[0]
|
|
# logits_shared_prefix.shape == torch.Size([1, 6, ...])
|
|
|
|
out_last_tokens = logits[:, -1, :] # last tokens in each batch line
|
|
out_shared_prefix_last_tokens = logits_shared_prefix[0, -3:, :] # last three tokens
|
|
|
|
# comparing softmax-normalized logits:
|
|
normalized_0 = torch.nn.functional.softmax(out_last_tokens)
|
|
normalized_1 = torch.nn.functional.softmax(out_shared_prefix_last_tokens)
|
|
print(torch.abs(normalized_0 - normalized_1).max())
|
|
|
|
torch.testing.assert_close(normalized_0, normalized_1, rtol=1e-3, atol=1e-3)
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@pytest.mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_generate_padding_right(self):
|
|
"""Overwrite the common test as the test is flaky on tiny models."""
|
|
model = GlmForCausalLM.from_pretrained(
|
|
"THUDM/glm-4-9b",
|
|
device_map={"": 0},
|
|
torch_dtype=torch.bfloat16,
|
|
revision="refs/pr/15",
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b", revision="refs/pr/15")
|
|
tokenizer.padding_side = "right"
|
|
|
|
texts = ["hi", "Hello this is a very long sentence"]
|
|
inputs = tokenizer(texts, return_tensors="pt", padding=True).to(0)
|
|
|
|
output_native = model.generate(**inputs, max_new_tokens=15, do_sample=False)
|
|
output_native = tokenizer.batch_decode(output_native)
|
|
|
|
model = GlmForCausalLM.from_pretrained(
|
|
"THUDM/glm-4-9b",
|
|
device_map={"": 0},
|
|
attn_implementation="flash_attention_2",
|
|
torch_dtype=torch.bfloat16,
|
|
revision="refs/pr/15",
|
|
)
|
|
|
|
output_fa_2 = model.generate(**inputs, max_new_tokens=15, do_sample=False)
|
|
output_fa_2 = tokenizer.batch_decode(output_fa_2)
|
|
|
|
self.assertListEqual(output_native, output_fa_2)
|
|
|
|
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
|
|
@require_torch_sdpa
|
|
@slow
|
|
@is_flaky
|
|
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
|
|
"""Overwrite to add flakyness: some cases can sometimes fail"""
|
|
if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
|
|
self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")
|
|
|
|
if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
|
|
self.skipTest(
|
|
f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
|
|
)
|
|
|
|
# Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead.
|
|
if torch_dtype == "float16":
|
|
torch_dtype = torch.float16
|
|
elif torch_dtype == "bfloat16":
|
|
torch_dtype = torch.bfloat16
|
|
elif torch_dtype == "float32":
|
|
torch_dtype = torch.float32
|
|
|
|
atols = {
|
|
("cpu", False, torch.float32): 1e-6,
|
|
("cpu", False, torch.bfloat16): 1e-2,
|
|
("cpu", True, torch.float32): 1e-6,
|
|
("cpu", True, torch.bfloat16): 1e-2,
|
|
("cuda", False, torch.float32): 1e-6,
|
|
("cuda", False, torch.bfloat16): 1e-2,
|
|
("cuda", False, torch.float16): 5e-3,
|
|
("cuda", True, torch.float32): 1e-6,
|
|
("cuda", True, torch.bfloat16): 1e-2,
|
|
("cuda", True, torch.float16): 5e-3,
|
|
}
|
|
rtols = {
|
|
("cpu", False, torch.float32): 1e-4,
|
|
("cpu", False, torch.bfloat16): 1e-2,
|
|
("cpu", True, torch.float32): 1e-4,
|
|
("cpu", True, torch.bfloat16): 1e-2,
|
|
("cuda", False, torch.float32): 1e-4,
|
|
("cuda", False, torch.bfloat16): 1e-2,
|
|
("cuda", False, torch.float16): 5e-3,
|
|
("cuda", True, torch.float32): 1e-4,
|
|
("cuda", True, torch.bfloat16): 3e-2,
|
|
("cuda", True, torch.float16): 5e-3,
|
|
}
|
|
|
|
def get_mean_reldiff(failcase, x, ref, atol, rtol):
|
|
return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
# FIXME: we deactivate boolean mask for models using "use_mask_token" in their constructors.
|
|
# These models support masking only in the case `use_mask_token=True`. Otherwise they cannot consume an input mask.
|
|
# This means that the class needs to be instantiated much later, after `use_mask` is set, which means a significant refactor of the code.
|
|
# However masking there is not done at any layers that matters (i.e self-attention), therefore we can safely deactivate it.
|
|
deactivate_mask = "use_mask_token" in inspect.signature(model_class).parameters
|
|
|
|
is_encoder_decoder = model.config.is_encoder_decoder
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
|
|
model_sdpa = model_sdpa.eval().to(torch_device)
|
|
|
|
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
|
|
|
|
model_eager = model_class.from_pretrained(
|
|
tmpdirname,
|
|
torch_dtype=torch_dtype,
|
|
attn_implementation="eager",
|
|
)
|
|
model_eager = model_eager.eval().to(torch_device)
|
|
|
|
self.assertTrue(model_eager.config._attn_implementation == "eager")
|
|
|
|
for name, submodule in model_eager.named_modules():
|
|
class_name = submodule.__class__.__name__
|
|
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
|
|
raise ValueError("The eager model should not have SDPA attention layers")
|
|
|
|
has_sdpa = False
|
|
for name, submodule in model_sdpa.named_modules():
|
|
class_name = submodule.__class__.__name__
|
|
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
|
|
has_sdpa = True
|
|
break
|
|
if not has_sdpa and model_sdpa.config.model_type != "falcon":
|
|
raise ValueError("The SDPA model should have SDPA attention layers")
|
|
|
|
# We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 16 times the model,
|
|
# but it would be nicer to have an efficient way to use parameterized.expand
|
|
fail_cases = []
|
|
for padding_side in ["left", "right"]:
|
|
for use_mask in [False, True]:
|
|
for output_attentions in [True, False]:
|
|
can_output_attn = "output_attentions" in inspect.signature(model_sdpa.forward).parameters
|
|
if not (self.has_attentions and can_output_attn) and output_attentions:
|
|
continue
|
|
for batch_size in [1, 5]:
|
|
dummy_input = inputs_dict[model.main_input_name]
|
|
|
|
if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
|
|
dummy_input = dummy_input.to(torch_dtype)
|
|
|
|
dummy_input = dummy_input[:batch_size]
|
|
if dummy_input.shape[0] != batch_size:
|
|
if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
|
|
extension = torch.rand(
|
|
batch_size - dummy_input.shape[0],
|
|
*dummy_input.shape[1:],
|
|
dtype=torch_dtype,
|
|
device=torch_device,
|
|
)
|
|
dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
|
|
else:
|
|
extension = torch.randint(
|
|
high=5,
|
|
size=(batch_size - dummy_input.shape[0], *dummy_input.shape[1:]),
|
|
dtype=dummy_input.dtype,
|
|
device=torch_device,
|
|
)
|
|
dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
|
|
|
|
if not use_mask:
|
|
dummy_attention_mask = None
|
|
else:
|
|
dummy_attention_mask = inputs_dict.get("attention_mask", None)
|
|
if dummy_attention_mask is None:
|
|
if is_encoder_decoder:
|
|
seqlen = inputs_dict.get("decoder_input_ids", dummy_input).shape[-1]
|
|
else:
|
|
seqlen = dummy_input.shape[-1]
|
|
dummy_attention_mask = (
|
|
torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device)
|
|
)
|
|
|
|
dummy_attention_mask = dummy_attention_mask[:batch_size]
|
|
if dummy_attention_mask.shape[0] != batch_size:
|
|
extension = torch.ones(
|
|
batch_size - dummy_attention_mask.shape[0],
|
|
*dummy_attention_mask.shape[1:],
|
|
dtype=dummy_attention_mask.dtype,
|
|
device=torch_device,
|
|
)
|
|
dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0)
|
|
dummy_attention_mask = dummy_attention_mask.to(torch_device)
|
|
|
|
dummy_attention_mask[:] = 1
|
|
if padding_side == "left":
|
|
dummy_attention_mask[-1, :-1] = 1
|
|
dummy_attention_mask[-1, -4:] = 0
|
|
elif padding_side == "right":
|
|
dummy_attention_mask[-1, 1:] = 1
|
|
dummy_attention_mask[-1, :3] = 0
|
|
|
|
for enable_kernels in [False, True]:
|
|
failcase = f"padding_side={padding_side}, use_mask={use_mask}, batch_size={batch_size}, enable_kernels={enable_kernels}"
|
|
if is_encoder_decoder:
|
|
decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[
|
|
:batch_size
|
|
]
|
|
if decoder_input_ids.shape[0] != batch_size:
|
|
extension = torch.ones(
|
|
batch_size - decoder_input_ids.shape[0],
|
|
*decoder_input_ids.shape[1:],
|
|
dtype=decoder_input_ids.dtype,
|
|
device=torch_device,
|
|
)
|
|
decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0)
|
|
decoder_input_ids = decoder_input_ids.to(torch_device)
|
|
|
|
# TODO: never an `attention_mask` arg here?
|
|
processed_inputs = {
|
|
model.main_input_name: dummy_input,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_attention_mask": dummy_attention_mask,
|
|
"output_hidden_states": True,
|
|
}
|
|
else:
|
|
processed_inputs = {
|
|
model.main_input_name: dummy_input,
|
|
"output_hidden_states": True,
|
|
}
|
|
|
|
# Otherwise fails for e.g. WhisperEncoderModel
|
|
if "attention_mask" in inspect.signature(model_eager.forward).parameters:
|
|
processed_inputs["attention_mask"] = dummy_attention_mask
|
|
|
|
if (
|
|
self.has_attentions
|
|
and "output_attentions" in inspect.signature(model_sdpa.forward).parameters
|
|
):
|
|
processed_inputs["output_attentions"] = output_attentions
|
|
if not deactivate_mask and (
|
|
"bool_masked_pos" in inspect.signature(model_eager.forward).parameters
|
|
):
|
|
dummy_mask = torch.ones((self.model_tester.num_masks,))
|
|
|
|
# In case of additional token (like class) we define a custom `mask_length`
|
|
if hasattr(self.model_tester, "mask_length"):
|
|
mask_length = self.model_tester.mask_length - dummy_mask.size(0)
|
|
else:
|
|
mask_length = self.model_tester.seq_length - dummy_mask.size(0)
|
|
dummy_mask = torch.cat([dummy_mask, torch.zeros(mask_length)])
|
|
dummy_bool_masked_pos = dummy_mask.expand(batch_size, -1).bool()
|
|
processed_inputs["bool_masked_pos"] = dummy_bool_masked_pos.to(torch_device)
|
|
|
|
if "noise" in inspect.signature(model_eager.forward).parameters:
|
|
np.random.seed(2)
|
|
num_patches = int(
|
|
(self.model_tester.image_size // self.model_tester.patch_size) ** 2
|
|
)
|
|
noise = np.random.uniform(size=(batch_size, num_patches))
|
|
processed_inputs["noise"] = torch.from_numpy(noise)
|
|
|
|
# TODO: test gradients as well (& for FA2 as well!)
|
|
with torch.no_grad():
|
|
with torch.backends.cuda.sdp_kernel(
|
|
enable_flash=enable_kernels,
|
|
enable_math=True,
|
|
enable_mem_efficient=enable_kernels,
|
|
):
|
|
prepared_inputs = self._prepare_for_class(processed_inputs, model_class)
|
|
outputs_eager = model_eager(**prepared_inputs)
|
|
outputs_sdpa = model_sdpa(**prepared_inputs)
|
|
|
|
logits_eager = (
|
|
outputs_eager.hidden_states[-1]
|
|
if not is_encoder_decoder
|
|
else outputs_eager.decoder_hidden_states[-1]
|
|
)
|
|
logits_sdpa = (
|
|
outputs_sdpa.hidden_states[-1]
|
|
if not is_encoder_decoder
|
|
else outputs_sdpa.decoder_hidden_states[-1]
|
|
)
|
|
|
|
if torch_device in ["cpu", "cuda"]:
|
|
atol = atols[torch_device, enable_kernels, torch_dtype]
|
|
rtol = rtols[torch_device, enable_kernels, torch_dtype]
|
|
else:
|
|
atol = 1e-7
|
|
rtol = 1e-4
|
|
|
|
# Masked tokens output slightly deviates - we don't mind that.
|
|
if use_mask:
|
|
if padding_side == "left":
|
|
sub_sdpa = logits_sdpa[:-1]
|
|
sub_eager = logits_eager[:-1]
|
|
if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
|
|
fail_cases.append(
|
|
get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
|
|
)
|
|
|
|
sub_sdpa = logits_sdpa[-1, :-4]
|
|
sub_eager = logits_eager[-1, :-4]
|
|
if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
|
|
fail_cases.append(
|
|
get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
|
|
)
|
|
|
|
# Testing the padding tokens is not really meaningful but anyway
|
|
# sub_sdpa = logits_sdpa[-1, -4:]
|
|
# sub_eager = logits_eager[-1, -4:]
|
|
# if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
|
|
# fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
|
|
elif padding_side == "right":
|
|
sub_sdpa = logits_sdpa[:-1]
|
|
sub_eager = logits_eager[:-1]
|
|
if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
|
|
fail_cases.append(
|
|
get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
|
|
)
|
|
|
|
sub_sdpa = logits_sdpa[-1, 3:]
|
|
sub_eager = logits_eager[-1, 3:]
|
|
if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
|
|
fail_cases.append(
|
|
get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
|
|
)
|
|
|
|
# Testing the padding tokens is not really meaningful but anyway
|
|
# sub_sdpa = logits_sdpa[-1, :3]
|
|
# sub_eager = logits_eager[-1, :3]
|
|
# if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
|
|
# fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
|
|
|
|
else:
|
|
if not torch.allclose(logits_sdpa, logits_eager, atol=atol, rtol=rtol):
|
|
fail_cases.append(
|
|
get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol)
|
|
)
|
|
|
|
self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class GlmIntegrationTest(unittest.TestCase):
|
|
input_text = ["Hello I am doing", "Hi today"]
|
|
model_id = "THUDM/glm-4-9b"
|
|
revision = "refs/pr/15"
|
|
# This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
|
|
# Depending on the hardware we get different logits / generations
|
|
cuda_compute_capability_major_version = None
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
if is_torch_available() and torch.cuda.is_available():
|
|
# 8 is for A100 / A10 and 7 for T4
|
|
cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]
|
|
|
|
def test_model_9b_fp16(self):
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16, revision=self.revision
|
|
).to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
def test_model_9b_bf16(self):
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, revision=self.revision
|
|
).to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
def test_model_9b_eager(self):
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id,
|
|
low_cpu_mem_usage=True,
|
|
torch_dtype=torch.bfloat16,
|
|
attn_implementation="eager",
|
|
revision=self.revision,
|
|
)
|
|
model.to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_torch_sdpa
|
|
def test_model_9b_sdpa(self):
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id,
|
|
low_cpu_mem_usage=True,
|
|
torch_dtype=torch.bfloat16,
|
|
attn_implementation="sdpa",
|
|
revision=self.revision,
|
|
)
|
|
model.to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_flash_attn
|
|
@pytest.mark.flash_attn_test
|
|
def test_model_9b_flash_attn(self):
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id,
|
|
low_cpu_mem_usage=True,
|
|
torch_dtype=torch.bfloat16,
|
|
attn_implementation="flash_attention_2",
|
|
revision=self.revision,
|
|
)
|
|
model.to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|