mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* i guessreverted all CdGen classes * style * llava onevision * fix copies * fix some tests * some more tests * dump * skip these * nevermind, i am dumb * revert fix not needed * fixup * fixup * another fixup * more fixup to make ci finally happy * fixup after rebasing * fix qwen tests * add internVL + typos here and there * image token index -> id * style * fix init weights * revert blip-2 not supported * address comments * fix copies * revert blip2 test file as well * as discussed internally, revert back CdGen models * fix some tests * fix more tests for compile * CI red * fix copies * enumerate explicitly allowed models * address comments * fix tests * fixup * style again * add tests for new model class * another fixup ( x _ x ) * [fixup] unused attributes can be removed post-deprecation
583 lines
22 KiB
Python
583 lines
22 KiB
Python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch GotOcr2 model."""
|
|
|
|
import unittest
|
|
|
|
import pytest
|
|
from parameterized import parameterized
|
|
|
|
from transformers import (
|
|
AutoProcessor,
|
|
AyaVisionConfig,
|
|
is_torch_available,
|
|
is_vision_available,
|
|
)
|
|
from transformers.testing_utils import (
|
|
Expectations,
|
|
cleanup,
|
|
require_deterministic_for_xpu,
|
|
require_read_token,
|
|
require_torch,
|
|
require_torch_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
AyaVisionForConditionalGeneration,
|
|
AyaVisionModel,
|
|
)
|
|
|
|
|
|
if is_vision_available():
|
|
pass
|
|
|
|
|
|
class AyaVisionVisionText2TextModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=3,
|
|
seq_length=7,
|
|
vision_feature_layer=-1,
|
|
downsample_factor=2,
|
|
ignore_index=-100,
|
|
bos_token_id=0,
|
|
eos_token_id=0,
|
|
pad_token_id=0,
|
|
image_token_index=1,
|
|
num_channels=3,
|
|
image_size=64,
|
|
model_type="aya_vision",
|
|
is_training=True,
|
|
text_config={
|
|
"model_type": "cohere2",
|
|
"vocab_size": 99,
|
|
"hidden_size": 128,
|
|
"intermediate_size": 37,
|
|
"num_hidden_layers": 4,
|
|
"num_attention_heads": 4,
|
|
"output_channels": 64,
|
|
"hidden_act": "silu",
|
|
"max_position_embeddings": 512,
|
|
"tie_word_embeddings": True,
|
|
"bos_token_id": 0,
|
|
"eos_token_id": 0,
|
|
"pad_token_id": 0,
|
|
},
|
|
vision_config={
|
|
"model_type": "siglip_vision_model",
|
|
"hidden_size": 32,
|
|
"num_hidden_layers": 2,
|
|
"num_attention_heads": 4,
|
|
"intermediate_size": 128,
|
|
"image_size": 64,
|
|
"patch_size": 8,
|
|
"vision_use_head": False,
|
|
},
|
|
):
|
|
self.parent = parent
|
|
self.ignore_index = ignore_index
|
|
self.bos_token_id = bos_token_id
|
|
self.eos_token_id = eos_token_id
|
|
self.pad_token_id = pad_token_id
|
|
self.image_token_index = image_token_index
|
|
self.model_type = model_type
|
|
self.text_config = text_config
|
|
self.vision_config = vision_config
|
|
self.batch_size = batch_size
|
|
self.vision_feature_layer = vision_feature_layer
|
|
self.downsample_factor = downsample_factor
|
|
self.is_training = is_training
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.image_seq_length = (image_size // (vision_config["patch_size"] * downsample_factor)) ** 2
|
|
self.seq_length = seq_length + self.image_seq_length
|
|
|
|
self.num_hidden_layers = text_config["num_hidden_layers"]
|
|
self.vocab_size = text_config["vocab_size"]
|
|
self.hidden_size = text_config["hidden_size"]
|
|
self.num_attention_heads = text_config["num_attention_heads"]
|
|
|
|
def get_config(self):
|
|
return AyaVisionConfig(
|
|
text_config=self.text_config,
|
|
vision_config=self.vision_config,
|
|
model_type=self.model_type,
|
|
bos_token_id=self.bos_token_id,
|
|
eos_token_id=self.eos_token_id,
|
|
pad_token_id=self.pad_token_id,
|
|
image_token_index=self.image_token_index,
|
|
vision_feature_layer=self.vision_feature_layer,
|
|
downsample_factor=self.downsample_factor,
|
|
)
|
|
|
|
def prepare_config_and_inputs(self):
|
|
config = self.get_config()
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
|
|
return config, pixel_values
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
|
|
print("attention_mask", attention_mask.shape)
|
|
# input_ids[:, -1] = self.pad_token_id
|
|
input_ids[input_ids == self.image_token_index] = self.pad_token_id
|
|
input_ids[:, : self.image_seq_length] = self.image_token_index
|
|
|
|
inputs_dict = {
|
|
"pixel_values": pixel_values,
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class AyaVisionModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
AyaVisionModel,
|
|
AyaVisionForConditionalGeneration,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
all_generative_model_classes = (AyaVisionForConditionalGeneration,) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{
|
|
"image-text-to-text": AyaVisionForConditionalGeneration,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_torchscript = False
|
|
test_head_masking = False
|
|
_is_composite = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = AyaVisionVisionText2TextModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=AyaVisionConfig, has_text_modality=False)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
def test_inputs_embeds(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values"]
|
|
|
|
wte = model.get_input_embeddings()
|
|
inputs["inputs_embeds"] = wte(input_ids)
|
|
|
|
with torch.no_grad():
|
|
model(**inputs)
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
# while some other models require pixel_values to be present
|
|
def test_inputs_embeds_matches_input_ids(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values"]
|
|
|
|
inputs_embeds = model.get_input_embeddings()(input_ids)
|
|
|
|
with torch.no_grad():
|
|
out_ids = model(input_ids=input_ids, **inputs)[0]
|
|
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
|
|
torch.testing.assert_close(out_embeds, out_ids)
|
|
|
|
@unittest.skip("Failing because of unique cache (HybridCache)")
|
|
def test_model_outputs_equivalence(self, **kwargs):
|
|
pass
|
|
|
|
@unittest.skip("Cohere2's forcefully disables sdpa due to softcapping")
|
|
def test_sdpa_can_dispatch_non_composite_models(self):
|
|
pass
|
|
|
|
@unittest.skip("Cohere2's eager attn/sdpa attn outputs are expected to be different")
|
|
def test_eager_matches_sdpa_generate(self):
|
|
pass
|
|
|
|
@parameterized.expand([("random",), ("same",)])
|
|
@pytest.mark.generate
|
|
@unittest.skip("Cohere2 has HybridCache which is not compatible with assisted decoding")
|
|
def test_assisted_decoding_matches_greedy_search(self, assistant_type):
|
|
pass
|
|
|
|
@unittest.skip("Cohere2 has HybridCache which is not compatible with assisted decoding")
|
|
def test_prompt_lookup_decoding_matches_greedy_search(self, assistant_type):
|
|
pass
|
|
|
|
@pytest.mark.generate
|
|
@unittest.skip("Cohere2 has HybridCache which is not compatible with assisted decoding")
|
|
def test_assisted_decoding_sample(self):
|
|
pass
|
|
|
|
@unittest.skip("Cohere2 has HybridCache which is not compatible with dola decoding")
|
|
def test_dola_decoding_sample(self):
|
|
pass
|
|
|
|
@unittest.skip("Cohere2 has HybridCache and doesn't support continue from past kv")
|
|
def test_generate_continue_from_past_key_values(self):
|
|
pass
|
|
|
|
@unittest.skip("Cohere2 has HybridCache and doesn't support low_memory generation")
|
|
def test_beam_search_low_memory(self):
|
|
pass
|
|
|
|
@unittest.skip("Cohere2 has HybridCache and doesn't support contrastive generation")
|
|
def test_contrastive_generate(self):
|
|
pass
|
|
|
|
@unittest.skip("Cohere2 has HybridCache and doesn't support contrastive generation")
|
|
def test_contrastive_generate_dict_outputs_use_cache(self):
|
|
pass
|
|
|
|
@unittest.skip("Cohere2 has HybridCache and doesn't support contrastive generation")
|
|
def test_contrastive_generate_low_memory(self):
|
|
pass
|
|
|
|
@unittest.skip("Cohere2 has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
|
|
def test_generate_with_static_cache(self):
|
|
pass
|
|
|
|
@unittest.skip("Cohere2 has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
|
|
def test_generate_from_inputs_embeds_with_static_cache(self):
|
|
pass
|
|
|
|
@unittest.skip("Cohere2 has HybridCache and doesn't support progressive generation using input embeds.")
|
|
def test_generate_continue_from_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip("Failing because of unique cache (HybridCache)")
|
|
def test_multi_gpu_data_parallel_forward(self):
|
|
pass
|
|
|
|
@unittest.skip("Cohere2's eager attn/sdpa attn outputs are expected to be different")
|
|
def test_sdpa_equivalence(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipVisionModel does not support standalone training")
|
|
def test_training(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipVisionModel does not support standalone training")
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipVisionModel does not support standalone training")
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SiglipVisionModel does not support standalone training")
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip uses the same initialization scheme as the Flax original implementation")
|
|
def test_initialization(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Compile not yet supported because in LLava models")
|
|
def test_sdpa_can_compile_dynamic(self):
|
|
pass
|
|
|
|
# todo: yoni - fix or improve the test
|
|
@unittest.skip("Difference is slightly higher than the threshold")
|
|
def test_batching_equivalence(self):
|
|
pass
|
|
|
|
|
|
@require_read_token
|
|
@require_torch
|
|
class AyaVisionIntegrationTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.model_checkpoint = "CohereForAI/aya-vision-8b"
|
|
|
|
def tearDown(self):
|
|
cleanup(torch_device, gc_collect=True)
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
def test_small_model_integration_forward(self):
|
|
processor = AutoProcessor.from_pretrained(self.model_checkpoint)
|
|
model = AyaVisionForConditionalGeneration.from_pretrained(
|
|
self.model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
|
|
)
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
|
|
{"type": "text", "text": "Please describe the image explicitly."},
|
|
],
|
|
}
|
|
]
|
|
|
|
inputs = processor.apply_chat_template(
|
|
messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
|
|
).to(torch_device, dtype=torch.float16)
|
|
# Forward
|
|
with torch.inference_mode():
|
|
output = model(**inputs)
|
|
|
|
actual_logits = output.logits[0, -1, :5].cpu()
|
|
print("actual_logits", actual_logits)
|
|
expected_logits = torch.tensor([0.4109, 0.1532, 0.8018, 2.1328, 0.5483], dtype=torch.float16)
|
|
self.assertTrue(
|
|
torch.allclose(actual_logits, expected_logits, atol=0.1),
|
|
f"Actual logits: {actual_logits}"
|
|
f"\nExpected logits: {expected_logits}"
|
|
f"\nDifference: {torch.abs(actual_logits - expected_logits)}",
|
|
)
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
@require_deterministic_for_xpu
|
|
def test_small_model_integration_generate_text_only(self):
|
|
processor = AutoProcessor.from_pretrained(self.model_checkpoint)
|
|
model = AyaVisionForConditionalGeneration.from_pretrained(
|
|
self.model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
|
|
)
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "Write a haiku"},
|
|
],
|
|
}
|
|
]
|
|
|
|
inputs = processor.apply_chat_template(
|
|
messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
|
|
).to(torch_device, dtype=torch.float16)
|
|
with torch.no_grad():
|
|
generate_ids = model.generate(**inputs, max_new_tokens=25, do_sample=False)
|
|
decoded_output = processor.decode(
|
|
generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True
|
|
)
|
|
print("decoded_output", decoded_output)
|
|
|
|
expected_outputs = Expectations(
|
|
{
|
|
("xpu", 3): "Whispers on the breeze,\nLeaves dance under moonlit sky,\nNature's quiet song.",
|
|
("cuda", 7): "Whispers on the breeze,\nLeaves dance under moonlit skies,\nNature's quiet song.",
|
|
}
|
|
) # fmt: skip
|
|
expected_output = expected_outputs.get_expectation()
|
|
|
|
self.assertEqual(decoded_output, expected_output)
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
def test_small_model_integration_generate_chat_template(self):
|
|
processor = AutoProcessor.from_pretrained(self.model_checkpoint)
|
|
model = AyaVisionForConditionalGeneration.from_pretrained(
|
|
self.model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
|
|
)
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
|
|
{"type": "text", "text": "Please describe the image explicitly."},
|
|
],
|
|
}
|
|
]
|
|
|
|
inputs = processor.apply_chat_template(
|
|
messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
|
|
).to(torch_device, dtype=torch.float16)
|
|
with torch.no_grad():
|
|
generate_ids = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
decoded_output = processor.decode(
|
|
generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True
|
|
)
|
|
print("decoded_output", decoded_output)
|
|
expected_output = "The image depicts a cozy scene of two cats resting on a bright pink blanket. The cats," # fmt: skip
|
|
self.assertEqual(decoded_output, expected_output)
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
def test_small_model_integration_batched_generate(self):
|
|
processor = AutoProcessor.from_pretrained(self.model_checkpoint)
|
|
model = AyaVisionForConditionalGeneration.from_pretrained(
|
|
self.model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
|
|
)
|
|
# Prepare inputs
|
|
messages = [
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
|
|
{"type": "text", "text": "Write a haiku for this image"},
|
|
],
|
|
},
|
|
],
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
|
|
{"type": "text", "text": "Describe this image"},
|
|
],
|
|
},
|
|
],
|
|
]
|
|
inputs = processor.apply_chat_template(
|
|
messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
|
|
).to(model.device, dtype=torch.float16)
|
|
|
|
output = model.generate(**inputs, do_sample=False, max_new_tokens=25)
|
|
|
|
# Check first output
|
|
decoded_output = processor.decode(output[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
|
|
print("decoded_output", decoded_output)
|
|
expected_outputs = Expectations(
|
|
{
|
|
("xpu", 3): "Wooden path to water,\nMountains echo in stillness,\nPeaceful forest lake.",
|
|
("cuda", 7): "Wooden path to water,\nMountains echo in stillness,\nPeaceful forest scene.",
|
|
}
|
|
) # fmt: skip
|
|
expected_output = expected_outputs.get_expectation()
|
|
|
|
self.assertEqual(
|
|
decoded_output,
|
|
expected_output,
|
|
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
|
|
)
|
|
|
|
# Check second output
|
|
decoded_output = processor.decode(output[1, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
|
|
print("decoded_output", decoded_output)
|
|
expected_output = 'This image captures a vibrant street scene in a bustling urban area, likely in an Asian city. The focal point is a' # fmt: skip
|
|
|
|
self.assertEqual(
|
|
decoded_output,
|
|
expected_output,
|
|
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
|
|
)
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
@require_deterministic_for_xpu
|
|
def test_small_model_integration_batched_generate_multi_image(self):
|
|
processor = AutoProcessor.from_pretrained(self.model_checkpoint)
|
|
model = AyaVisionForConditionalGeneration.from_pretrained(
|
|
self.model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
|
|
)
|
|
# Prepare inputs
|
|
messages = [
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
|
|
{"type": "text", "text": "Write a haiku for this image"},
|
|
],
|
|
},
|
|
],
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image",
|
|
"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
|
|
},
|
|
{
|
|
"type": "image",
|
|
"url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": "These images depict two different landmarks. Can you identify them?",
|
|
},
|
|
],
|
|
},
|
|
],
|
|
]
|
|
inputs = processor.apply_chat_template(
|
|
messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
|
|
).to(model.device, dtype=torch.float16)
|
|
output = model.generate(**inputs, do_sample=False, max_new_tokens=25)
|
|
|
|
# Check first output
|
|
decoded_output = processor.decode(output[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
|
|
# Batching seems to alter the output slightly, but it is also the case in the original implementation. This seems to be expected: https://github.com/huggingface/transformers/issues/23017#issuecomment-1649630232
|
|
expected_outputs = Expectations(
|
|
{
|
|
("xpu", 3): "Wooden path to water,\nMountains echo in stillness,\nPeaceful forest lake.",
|
|
("cuda", 7): "Wooden path to water,\nMountains echo in stillness,\nPeaceful forest scene.",
|
|
}
|
|
) # fmt: skip
|
|
expected_output = expected_outputs.get_expectation()
|
|
|
|
print("decoded_output", decoded_output)
|
|
self.assertEqual(
|
|
decoded_output,
|
|
expected_output,
|
|
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
|
|
)
|
|
|
|
# Check second output
|
|
decoded_output = processor.decode(output[1, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
|
|
print("decoded_output", decoded_output)
|
|
expected_outputs = Expectations(
|
|
{
|
|
("xpu", 3): "The first image showcases the Statue of Liberty, a colossal neoclassical sculpture on Liberty Island in New York Harbor. Standing at ",
|
|
("cuda", 7): "The first image showcases the Statue of Liberty, a colossal neoclassical sculpture on Liberty Island in New York Harbor. Standing at a",
|
|
}
|
|
) # fmt: skip
|
|
expected_output = expected_outputs.get_expectation()
|
|
self.assertEqual(
|
|
decoded_output,
|
|
expected_output,
|
|
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
|
|
)
|