transformers/tests/models/aya_vision/test_modeling_aya_vision.py
Raushan Turganbay 17742bd9c8
🔴 [VLM] Add base model without head (#37033)
* i guessreverted all CdGen classes

* style

* llava onevision

* fix copies

* fix some tests

* some more tests

* dump

* skip these

* nevermind, i am dumb

* revert fix not needed

* fixup

* fixup

* another fixup

* more fixup to make ci finally happy

* fixup after rebasing

* fix qwen tests

* add internVL + typos here and there

* image token index -> id

* style

* fix init weights

* revert blip-2 not supported

* address comments

* fix copies

* revert blip2 test file as well

* as discussed internally, revert back CdGen models

* fix some tests

* fix more tests for compile

* CI red

* fix copies

* enumerate explicitly allowed models

* address comments

* fix tests

* fixup

* style again

* add tests for new model class

* another fixup ( x _ x )

* [fixup] unused attributes can be removed post-deprecation
2025-05-07 17:47:51 +02:00

583 lines
22 KiB
Python

# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch GotOcr2 model."""
import unittest
import pytest
from parameterized import parameterized
from transformers import (
AutoProcessor,
AyaVisionConfig,
is_torch_available,
is_vision_available,
)
from transformers.testing_utils import (
Expectations,
cleanup,
require_deterministic_for_xpu,
require_read_token,
require_torch,
require_torch_accelerator,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
AyaVisionForConditionalGeneration,
AyaVisionModel,
)
if is_vision_available():
pass
class AyaVisionVisionText2TextModelTester:
def __init__(
self,
parent,
batch_size=3,
seq_length=7,
vision_feature_layer=-1,
downsample_factor=2,
ignore_index=-100,
bos_token_id=0,
eos_token_id=0,
pad_token_id=0,
image_token_index=1,
num_channels=3,
image_size=64,
model_type="aya_vision",
is_training=True,
text_config={
"model_type": "cohere2",
"vocab_size": 99,
"hidden_size": 128,
"intermediate_size": 37,
"num_hidden_layers": 4,
"num_attention_heads": 4,
"output_channels": 64,
"hidden_act": "silu",
"max_position_embeddings": 512,
"tie_word_embeddings": True,
"bos_token_id": 0,
"eos_token_id": 0,
"pad_token_id": 0,
},
vision_config={
"model_type": "siglip_vision_model",
"hidden_size": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 128,
"image_size": 64,
"patch_size": 8,
"vision_use_head": False,
},
):
self.parent = parent
self.ignore_index = ignore_index
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.image_token_index = image_token_index
self.model_type = model_type
self.text_config = text_config
self.vision_config = vision_config
self.batch_size = batch_size
self.vision_feature_layer = vision_feature_layer
self.downsample_factor = downsample_factor
self.is_training = is_training
self.num_channels = num_channels
self.image_size = image_size
self.image_seq_length = (image_size // (vision_config["patch_size"] * downsample_factor)) ** 2
self.seq_length = seq_length + self.image_seq_length
self.num_hidden_layers = text_config["num_hidden_layers"]
self.vocab_size = text_config["vocab_size"]
self.hidden_size = text_config["hidden_size"]
self.num_attention_heads = text_config["num_attention_heads"]
def get_config(self):
return AyaVisionConfig(
text_config=self.text_config,
vision_config=self.vision_config,
model_type=self.model_type,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
image_token_index=self.image_token_index,
vision_feature_layer=self.vision_feature_layer,
downsample_factor=self.downsample_factor,
)
def prepare_config_and_inputs(self):
config = self.get_config()
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
print("attention_mask", attention_mask.shape)
# input_ids[:, -1] = self.pad_token_id
input_ids[input_ids == self.image_token_index] = self.pad_token_id
input_ids[:, : self.image_seq_length] = self.image_token_index
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class AyaVisionModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
AyaVisionModel,
AyaVisionForConditionalGeneration,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (AyaVisionForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"image-text-to-text": AyaVisionForConditionalGeneration,
}
if is_torch_available()
else {}
)
fx_compatible = False
test_pruning = False
test_torchscript = False
test_head_masking = False
_is_composite = True
def setUp(self):
self.model_tester = AyaVisionVisionText2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=AyaVisionConfig, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
wte = model.get_input_embeddings()
inputs["inputs_embeds"] = wte(input_ids)
with torch.no_grad():
model(**inputs)
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
# while some other models require pixel_values to be present
def test_inputs_embeds_matches_input_ids(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
inputs_embeds = model.get_input_embeddings()(input_ids)
with torch.no_grad():
out_ids = model(input_ids=input_ids, **inputs)[0]
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
torch.testing.assert_close(out_embeds, out_ids)
@unittest.skip("Failing because of unique cache (HybridCache)")
def test_model_outputs_equivalence(self, **kwargs):
pass
@unittest.skip("Cohere2's forcefully disables sdpa due to softcapping")
def test_sdpa_can_dispatch_non_composite_models(self):
pass
@unittest.skip("Cohere2's eager attn/sdpa attn outputs are expected to be different")
def test_eager_matches_sdpa_generate(self):
pass
@parameterized.expand([("random",), ("same",)])
@pytest.mark.generate
@unittest.skip("Cohere2 has HybridCache which is not compatible with assisted decoding")
def test_assisted_decoding_matches_greedy_search(self, assistant_type):
pass
@unittest.skip("Cohere2 has HybridCache which is not compatible with assisted decoding")
def test_prompt_lookup_decoding_matches_greedy_search(self, assistant_type):
pass
@pytest.mark.generate
@unittest.skip("Cohere2 has HybridCache which is not compatible with assisted decoding")
def test_assisted_decoding_sample(self):
pass
@unittest.skip("Cohere2 has HybridCache which is not compatible with dola decoding")
def test_dola_decoding_sample(self):
pass
@unittest.skip("Cohere2 has HybridCache and doesn't support continue from past kv")
def test_generate_continue_from_past_key_values(self):
pass
@unittest.skip("Cohere2 has HybridCache and doesn't support low_memory generation")
def test_beam_search_low_memory(self):
pass
@unittest.skip("Cohere2 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate(self):
pass
@unittest.skip("Cohere2 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate_dict_outputs_use_cache(self):
pass
@unittest.skip("Cohere2 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate_low_memory(self):
pass
@unittest.skip("Cohere2 has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_with_static_cache(self):
pass
@unittest.skip("Cohere2 has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_from_inputs_embeds_with_static_cache(self):
pass
@unittest.skip("Cohere2 has HybridCache and doesn't support progressive generation using input embeds.")
def test_generate_continue_from_inputs_embeds(self):
pass
@unittest.skip("Failing because of unique cache (HybridCache)")
def test_multi_gpu_data_parallel_forward(self):
pass
@unittest.skip("Cohere2's eager attn/sdpa attn outputs are expected to be different")
def test_sdpa_equivalence(self):
pass
@unittest.skip(reason="SiglipVisionModel does not support standalone training")
def test_training(self):
pass
@unittest.skip(reason="SiglipVisionModel does not support standalone training")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="SiglipVisionModel does not support standalone training")
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(reason="SiglipVisionModel does not support standalone training")
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="Siglip uses the same initialization scheme as the Flax original implementation")
def test_initialization(self):
pass
@unittest.skip(reason="Compile not yet supported because in LLava models")
def test_sdpa_can_compile_dynamic(self):
pass
# todo: yoni - fix or improve the test
@unittest.skip("Difference is slightly higher than the threshold")
def test_batching_equivalence(self):
pass
@require_read_token
@require_torch
class AyaVisionIntegrationTest(unittest.TestCase):
def setUp(self):
self.model_checkpoint = "CohereForAI/aya-vision-8b"
def tearDown(self):
cleanup(torch_device, gc_collect=True)
@slow
@require_torch_accelerator
def test_small_model_integration_forward(self):
processor = AutoProcessor.from_pretrained(self.model_checkpoint)
model = AyaVisionForConditionalGeneration.from_pretrained(
self.model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
)
messages = [
{
"role": "user",
"content": [
{"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
{"type": "text", "text": "Please describe the image explicitly."},
],
}
]
inputs = processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
).to(torch_device, dtype=torch.float16)
# Forward
with torch.inference_mode():
output = model(**inputs)
actual_logits = output.logits[0, -1, :5].cpu()
print("actual_logits", actual_logits)
expected_logits = torch.tensor([0.4109, 0.1532, 0.8018, 2.1328, 0.5483], dtype=torch.float16)
self.assertTrue(
torch.allclose(actual_logits, expected_logits, atol=0.1),
f"Actual logits: {actual_logits}"
f"\nExpected logits: {expected_logits}"
f"\nDifference: {torch.abs(actual_logits - expected_logits)}",
)
@slow
@require_torch_accelerator
@require_deterministic_for_xpu
def test_small_model_integration_generate_text_only(self):
processor = AutoProcessor.from_pretrained(self.model_checkpoint)
model = AyaVisionForConditionalGeneration.from_pretrained(
self.model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
)
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "Write a haiku"},
],
}
]
inputs = processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
).to(torch_device, dtype=torch.float16)
with torch.no_grad():
generate_ids = model.generate(**inputs, max_new_tokens=25, do_sample=False)
decoded_output = processor.decode(
generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True
)
print("decoded_output", decoded_output)
expected_outputs = Expectations(
{
("xpu", 3): "Whispers on the breeze,\nLeaves dance under moonlit sky,\nNature's quiet song.",
("cuda", 7): "Whispers on the breeze,\nLeaves dance under moonlit skies,\nNature's quiet song.",
}
) # fmt: skip
expected_output = expected_outputs.get_expectation()
self.assertEqual(decoded_output, expected_output)
@slow
@require_torch_accelerator
def test_small_model_integration_generate_chat_template(self):
processor = AutoProcessor.from_pretrained(self.model_checkpoint)
model = AyaVisionForConditionalGeneration.from_pretrained(
self.model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
)
messages = [
{
"role": "user",
"content": [
{"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
{"type": "text", "text": "Please describe the image explicitly."},
],
}
]
inputs = processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
).to(torch_device, dtype=torch.float16)
with torch.no_grad():
generate_ids = model.generate(**inputs, max_new_tokens=20, do_sample=False)
decoded_output = processor.decode(
generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True
)
print("decoded_output", decoded_output)
expected_output = "The image depicts a cozy scene of two cats resting on a bright pink blanket. The cats," # fmt: skip
self.assertEqual(decoded_output, expected_output)
@slow
@require_torch_accelerator
def test_small_model_integration_batched_generate(self):
processor = AutoProcessor.from_pretrained(self.model_checkpoint)
model = AyaVisionForConditionalGeneration.from_pretrained(
self.model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
)
# Prepare inputs
messages = [
[
{
"role": "user",
"content": [
{"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
{"type": "text", "text": "Write a haiku for this image"},
],
},
],
[
{
"role": "user",
"content": [
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
{"type": "text", "text": "Describe this image"},
],
},
],
]
inputs = processor.apply_chat_template(
messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
).to(model.device, dtype=torch.float16)
output = model.generate(**inputs, do_sample=False, max_new_tokens=25)
# Check first output
decoded_output = processor.decode(output[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print("decoded_output", decoded_output)
expected_outputs = Expectations(
{
("xpu", 3): "Wooden path to water,\nMountains echo in stillness,\nPeaceful forest lake.",
("cuda", 7): "Wooden path to water,\nMountains echo in stillness,\nPeaceful forest scene.",
}
) # fmt: skip
expected_output = expected_outputs.get_expectation()
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
# Check second output
decoded_output = processor.decode(output[1, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print("decoded_output", decoded_output)
expected_output = 'This image captures a vibrant street scene in a bustling urban area, likely in an Asian city. The focal point is a' # fmt: skip
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
@slow
@require_torch_accelerator
@require_deterministic_for_xpu
def test_small_model_integration_batched_generate_multi_image(self):
processor = AutoProcessor.from_pretrained(self.model_checkpoint)
model = AyaVisionForConditionalGeneration.from_pretrained(
self.model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
)
# Prepare inputs
messages = [
[
{
"role": "user",
"content": [
{"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
{"type": "text", "text": "Write a haiku for this image"},
],
},
],
[
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
},
{
"type": "image",
"url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
},
{
"type": "text",
"text": "These images depict two different landmarks. Can you identify them?",
},
],
},
],
]
inputs = processor.apply_chat_template(
messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
).to(model.device, dtype=torch.float16)
output = model.generate(**inputs, do_sample=False, max_new_tokens=25)
# Check first output
decoded_output = processor.decode(output[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
# Batching seems to alter the output slightly, but it is also the case in the original implementation. This seems to be expected: https://github.com/huggingface/transformers/issues/23017#issuecomment-1649630232
expected_outputs = Expectations(
{
("xpu", 3): "Wooden path to water,\nMountains echo in stillness,\nPeaceful forest lake.",
("cuda", 7): "Wooden path to water,\nMountains echo in stillness,\nPeaceful forest scene.",
}
) # fmt: skip
expected_output = expected_outputs.get_expectation()
print("decoded_output", decoded_output)
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
# Check second output
decoded_output = processor.decode(output[1, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print("decoded_output", decoded_output)
expected_outputs = Expectations(
{
("xpu", 3): "The first image showcases the Statue of Liberty, a colossal neoclassical sculpture on Liberty Island in New York Harbor. Standing at ",
("cuda", 7): "The first image showcases the Statue of Liberty, a colossal neoclassical sculpture on Liberty Island in New York Harbor. Standing at a",
}
) # fmt: skip
expected_output = expected_outputs.get_expectation()
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)