transformers/tests/models/aria/test_modeling_aria.py
Raushan Turganbay 17742bd9c8
🔴 [VLM] Add base model without head (#37033)
* i guessreverted all CdGen classes

* style

* llava onevision

* fix copies

* fix some tests

* some more tests

* dump

* skip these

* nevermind, i am dumb

* revert fix not needed

* fixup

* fixup

* another fixup

* more fixup to make ci finally happy

* fixup after rebasing

* fix qwen tests

* add internVL + typos here and there

* image token index -> id

* style

* fix init weights

* revert blip-2 not supported

* address comments

* fix copies

* revert blip2 test file as well

* as discussed internally, revert back CdGen models

* fix some tests

* fix more tests for compile

* CI red

* fix copies

* enumerate explicitly allowed models

* address comments

* fix tests

* fixup

* style again

* add tests for new model class

* another fixup ( x _ x )

* [fixup] unused attributes can be removed post-deprecation
2025-05-07 17:47:51 +02:00

535 lines
24 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Aria model."""
import gc
import unittest
import requests
from transformers import (
AriaConfig,
AriaForConditionalGeneration,
AriaModel,
AriaTextConfig,
AutoProcessor,
AutoTokenizer,
is_torch_available,
is_vision_available,
)
from transformers.models.idefics3 import Idefics3VisionConfig
from transformers.testing_utils import (
require_bitsandbytes,
require_torch,
require_torch_large_accelerator,
require_vision,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
class AriaVisionText2TextModelTester:
def __init__(
self,
parent,
ignore_index=-100,
image_token_index=9,
projector_hidden_act="gelu",
seq_length=7,
vision_feature_select_strategy="default",
vision_feature_layer=-1,
text_config=AriaTextConfig(
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=1,
hidden_size=32,
intermediate_size=64,
max_position_embeddings=60,
model_type="aria_moe_lm",
moe_intermediate_size=4,
moe_num_experts=4,
moe_topk=2,
num_attention_heads=8,
num_experts_per_tok=3,
num_hidden_layers=2,
num_key_value_heads=8,
rope_theta=5000000,
vocab_size=99,
eos_token_id=2,
head_dim=4,
),
is_training=True,
vision_config=Idefics3VisionConfig(
image_size=358,
patch_size=10,
num_channels=3,
is_training=True,
hidden_size=32,
projection_dim=20,
num_hidden_layers=2,
num_attention_heads=16,
intermediate_size=10,
dropout=0.1,
attention_dropout=0.1,
initializer_range=0.02,
),
):
self.parent = parent
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
self.text_config = text_config
self.vision_config = vision_config
self.pad_token_id = text_config.pad_token_id
self.eos_token_id = text_config.eos_token_id
self.num_hidden_layers = text_config.num_hidden_layers
self.vocab_size = text_config.vocab_size
self.hidden_size = text_config.hidden_size
self.num_attention_heads = text_config.num_attention_heads
self.is_training = is_training
self.batch_size = 10
self.num_channels = 3
self.image_size = 358
self.num_image_tokens = 128
self.seq_length = seq_length + self.num_image_tokens
def get_config(self):
return AriaConfig(
text_config=self.text_config,
vision_config=self.vision_config,
ignore_index=self.ignore_index,
image_token_index=self.image_token_index,
projector_hidden_act=self.projector_hidden_act,
vision_feature_select_strategy=self.vision_feature_select_strategy,
vision_feature_layer=self.vision_feature_layer,
eos_token_id=self.eos_token_id,
)
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[
self.batch_size,
self.vision_config.num_channels,
self.vision_config.image_size,
self.vision_config.image_size,
]
)
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
attention_mask = input_ids.ne(1).to(torch_device)
input_ids[input_ids == config.image_token_index] = self.pad_token_id
input_ids[:, : self.num_image_tokens] = config.image_token_index
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class AriaForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
"""
Model tester for `AriaForConditionalGeneration`.
"""
all_model_classes = (AriaModel, AriaForConditionalGeneration) if is_torch_available() else ()
test_pruning = False
test_head_masking = False
_is_composite = True
def setUp(self):
self.model_tester = AriaVisionText2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=AriaConfig, has_text_modality=False)
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
wte = model.get_input_embeddings()
inputs["inputs_embeds"] = wte(input_ids)
with torch.no_grad():
model(**inputs)
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
# while some other models require pixel_values to be present
def test_inputs_embeds_matches_input_ids(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
inputs_embeds = model.get_input_embeddings()(input_ids)
with torch.no_grad():
out_ids = model(input_ids=input_ids, **inputs)[0]
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
torch.testing.assert_close(out_embeds, out_ids)
@unittest.skip(
reason="This architecture seems to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecture seems to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecture seems to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="Compile not yet supported because in LLava models")
def test_sdpa_can_compile_dynamic(self):
pass
@unittest.skip(reason="Compile not yet supported because in LLava models")
def test_sdpa_can_dispatch_on_flash(self):
pass
@unittest.skip(reason="Feedforward chunking is not yet supported")
def test_feed_forward_chunking(self):
pass
@unittest.skip(reason="Unstable test")
def test_initialization(self):
pass
@unittest.skip(reason="Unstable test")
def test_dola_decoding_sample(self):
pass
@unittest.skip(reason="Unsupported")
def test_generate_from_inputs_embeds_0_greedy(self):
pass
@unittest.skip(reason="Unsupported")
def test_generate_from_inputs_embeds_1_beam_search(self):
pass
@unittest.skip(reason="Dynamic control flow due to MoE")
def test_generate_with_static_cache(self):
pass
@unittest.skip(reason="Dynamic control flow due to MoE")
def test_generate_from_inputs_embeds_with_static_cache(self):
pass
@unittest.skip(reason="Aria uses nn.MHA which is not compatible with offloading")
def test_cpu_offload(self):
pass
@unittest.skip(reason="Aria uses nn.MHA which is not compatible with offloading")
def test_disk_offload_bin(self):
pass
@unittest.skip(reason="Aria uses nn.MHA which is not compatible with offloading")
def test_disk_offload_safetensors(self):
pass
@require_torch
class AriaForConditionalGenerationIntegrationTest(unittest.TestCase):
def setUp(self):
self.processor = AutoProcessor.from_pretrained("rhymes-ai/Aria")
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
@slow
@require_torch_large_accelerator
@require_bitsandbytes
def test_small_model_integration_test(self):
# Let's make sure we test the preprocessing to replace what is used
model = AriaForConditionalGeneration.from_pretrained("rhymes-ai/Aria", load_in_4bit=True)
prompt = "<image>\nUSER: What are the things I should be cautious about when I visit this place?\nASSISTANT:"
image_file = "https://aria-vl.github.io/static/images/view.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = self.processor(images=raw_image, text=prompt, return_tensors="pt")
EXPECTED_INPUT_IDS = torch.tensor([[1, 32000, 28705, 13, 11123, 28747, 1824, 460, 272, 1722,315, 1023, 347, 13831, 925, 684, 739, 315, 3251, 456,1633, 28804, 13, 4816, 8048, 12738, 28747]]) # fmt: skip
self.assertTrue(torch.equal(inputs["input_ids"], EXPECTED_INPUT_IDS))
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = "\nUSER: What are the things I should be cautious about when I visit this place?\nASSISTANT: When visiting this place, there are a few things one should be cautious about. Firstly," # fmt: skip
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_torch_large_accelerator
@require_bitsandbytes
def test_small_model_integration_test_llama_single(self):
# Let's make sure we test the preprocessing to replace what is used
model_id = "rhymes-ai/Aria"
model = AriaForConditionalGeneration.from_pretrained(model_id, load_in_4bit=True)
processor = AutoProcessor.from_pretrained(model_id)
prompt = "USER: <image>\nWhat are the things I should be cautious about when I visit this place? ASSISTANT:"
image_file = "https://aria-vl.github.io/static/images/view.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(images=raw_image, text=prompt, return_tensors="pt").to(torch_device, torch.float16)
output = model.generate(**inputs, max_new_tokens=900, do_sample=False)
EXPECTED_DECODED_TEXT = "USER: \nWhat are the things I should be cautious about when I visit this place? ASSISTANT: When visiting this place, which is a pier or dock extending over a body of water, there are a few things to be cautious about. First, be aware of the weather conditions, as sudden changes in weather can make the pier unsafe to walk on. Second, be mindful of the water depth and any potential hazards, such as submerged rocks or debris, that could cause accidents or injuries. Additionally, be cautious of the tides and currents, as they can change rapidly and pose a risk to swimmers or those who venture too close to the edge of the pier. Finally, be respectful of the environment and other visitors, and follow any posted rules or guidelines for the area." # fmt: skip
self.assertEqual(
processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_torch_large_accelerator
@require_bitsandbytes
def test_small_model_integration_test_llama_batched(self):
# Let's make sure we test the preprocessing to replace what is used
model_id = "rhymes-ai/Aria"
model = AriaForConditionalGeneration.from_pretrained(model_id, load_in_4bit=True)
processor = AutoProcessor.from_pretrained(model_id)
prompts = [
"USER: <image>\nWhat are the things I should be cautious about when I visit this place? What should I bring with me? ASSISTANT:",
"USER: <image>\nWhat is this? ASSISTANT:",
]
image1 = Image.open(requests.get("https://aria-vl.github.io/static/images/view.jpg", stream=True).raw)
image2 = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
inputs = processor(images=[image1, image2], text=prompts, return_tensors="pt", padding=True)
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = ['USER: \nWhat are the things I should be cautious about when I visit this place? What should I bring with me? ASSISTANT: When visiting this place, which is a pier or dock extending over a body of water, you', 'USER: \nWhat is this? ASSISTANT: The image features two cats lying down on a pink couch. One cat is located on'] # fmt: skip
self.assertEqual(
processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_torch_large_accelerator
@require_bitsandbytes
def test_small_model_integration_test_batch(self):
# Let's make sure we test the preprocessing to replace what is used
model = AriaForConditionalGeneration.from_pretrained("rhymes-ai/Aria", load_in_4bit=True)
# The first batch is longer in terms of text, but only has 1 image. The second batch will be padded in text, but the first will be padded because images take more space!.
prompts = [
"USER: <image>\nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT:",
"USER: <image>\nWhat is this?\nASSISTANT:",
]
image1 = Image.open(requests.get("https://aria-vl.github.io/static/images/view.jpg", stream=True).raw)
image2 = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
inputs = self.processor(images=[image1, image2], text=prompts, return_tensors="pt", padding=True)
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = [
'USER: \nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT: When visiting this place, there are a few things to be cautious about and items to bring.',
'USER: \nWhat is this?\nASSISTANT: Cats'
] # fmt: skip
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_torch_large_accelerator
@require_bitsandbytes
def test_small_model_integration_test_llama_batched_regression(self):
# Let's make sure we test the preprocessing to replace what is used
model_id = "rhymes-ai/Aria"
# Multi-image & multi-prompt (e.g. 3 images and 2 prompts now fails with SDPA, this tests if "eager" works as before)
model = AriaForConditionalGeneration.from_pretrained(model_id, load_in_4bit=True, attn_implementation="eager")
processor = AutoProcessor.from_pretrained(model_id, pad_token="<pad>")
prompts = [
"USER: <image>\nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT:",
"USER: <image>\nWhat is this?\nASSISTANT: Two cats lying on a bed!\nUSER: <image>\nAnd this?\nASSISTANT:",
]
image1 = Image.open(requests.get("https://aria-vl.github.io/static/images/view.jpg", stream=True).raw)
image2 = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
inputs = processor(images=[image1, image2, image1], text=prompts, return_tensors="pt", padding=True)
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = ['USER: \nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT: When visiting this place, which appears to be a dock or pier extending over a body of water', 'USER: \nWhat is this?\nASSISTANT: Two cats lying on a bed!\nUSER: \nAnd this?\nASSISTANT: A cat sleeping on a bed.'] # fmt: skip
self.assertEqual(
processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_torch_large_accelerator
@require_vision
@require_bitsandbytes
def test_batched_generation(self):
# Skip multihead_attn for 4bit because MHA will read the original weight without dequantize.
# See https://github.com/huggingface/transformers/pull/37444#discussion_r2045852538.
model = AriaForConditionalGeneration.from_pretrained(
"rhymes-ai/Aria", load_in_4bit=True, llm_int8_skip_modules=["multihead_attn"]
)
processor = AutoProcessor.from_pretrained("rhymes-ai/Aria")
prompt1 = "<image>\n<image>\nUSER: What's the difference of two images?\nASSISTANT:"
prompt2 = "<image>\nUSER: Describe the image.\nASSISTANT:"
prompt3 = "<image>\nUSER: Describe the image.\nASSISTANT:"
url1 = "https://images.unsplash.com/photo-1552053831-71594a27632d?q=80&w=3062&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
url2 = "https://images.unsplash.com/photo-1617258683320-61900b281ced?q=80&w=3087&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
image1 = Image.open(requests.get(url1, stream=True).raw)
image2 = Image.open(requests.get(url2, stream=True).raw)
# Create inputs
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": prompt1},
{"type": "image"},
{"type": "text", "text": prompt2},
],
},
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": prompt3},
],
},
]
prompts = [processor.apply_chat_template([message], add_generation_prompt=True) for message in messages]
images = [[image1, image2], [image2]]
inputs = processor(text=prompts, images=images, padding=True, return_tensors="pt").to(
device=model.device, dtype=model.dtype
)
EXPECTED_OUTPUT = {
"cpu": [
"<|im_start|>user\n<fim_prefix><fim_suffix> <image>\n <image>\n USER: What's the difference of two images?\n ASSISTANT:<fim_prefix><fim_suffix> <image>\n USER: Describe the image.\n ASSISTANT:<|im_end|>\n <|im_start|>assistant\n The first image features a cute, light-colored puppy sitting on a paved surface with",
"<|im_start|>user\n<fim_prefix><fim_suffix> <image>\n USER: Describe the image.\n ASSISTANT:<|im_end|>\n <|im_start|>assistant\n The image shows a young alpaca standing on a grassy hill. The alpaca has",
], # cpu output
"cuda": [
"<|im_start|>user\n<fim_prefix><fim_suffix> <image>\n <image>\n USER: What's the difference of two images?\n ASSISTANT:<fim_prefix><fim_suffix> <image>\n USER: Describe the image.\n ASSISTANT:<|im_end|>\n <|im_start|>assistant\n The first image features a cute, light-colored puppy sitting on a paved surface with",
"<|im_start|>user\n<fim_prefix><fim_suffix> <image>\n USER: Describe the image.\n ASSISTANT:<|im_end|>\n <|im_start|>assistant\n The image shows a young alpaca standing on a patch of ground with some dry grass. The",
], # cuda output
"xpu": [
"<|im_start|>user\n<fim_prefix><fim_suffix> <image>\n <image>\n USER: What's the difference of two images?\n ASSISTANT:<fim_prefix><fim_suffix> <image>\n USER: Describe the image.\n ASSISTANT:<|im_end|>\n <|im_start|>assistant\n The first image features a cute, light-colored puppy sitting on a paved surface with",
"<|im_start|>user\n<fim_prefix><fim_suffix> <image>\n USER: Describe the image.\n ASSISTANT:<|im_end|>\n <|im_start|>assistant\n The image shows a young alpaca standing on a grassy hill. The alpaca has",
], # xpu output
}
generate_ids = model.generate(**inputs, max_new_tokens=20)
outputs = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
self.assertListEqual(outputs, EXPECTED_OUTPUT[model.device.type])
def test_tokenizer_integration(self):
model_id = "rhymes-ai/Aria"
slow_tokenizer = AutoTokenizer.from_pretrained(
model_id, bos_token="<|startoftext|>", eos_token="<|endoftext|>", use_fast=False
)
slow_tokenizer.add_tokens("<image>", True)
fast_tokenizer = AutoTokenizer.from_pretrained(
model_id,
bos_token="<|startoftext|>",
eos_token="<|endoftext|>",
from_slow=True,
legacy=False,
)
fast_tokenizer.add_tokens("<image>", True)
prompt = "<|startoftext|><|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|>"
EXPECTED_OUTPUT = ['<|startoftext|>', '<', '|', 'im', '_', 'start', '|', '>', 'system', '\n', 'Answer', '▁the', '▁questions', '.<', '|', 'im', '_', 'end', '|', '><', '|', 'im', '_', 'start', '|', '>', 'user', '\n', '<image>', '\n', 'What', '▁is', '▁shown', '▁in', '▁this', '▁image', '?', '<', '|', 'im', '_', 'end', '|', '>'] # fmt: skip
self.assertEqual(slow_tokenizer.tokenize(prompt), EXPECTED_OUTPUT)
self.assertEqual(fast_tokenizer.tokenize(prompt), EXPECTED_OUTPUT)
@slow
@require_torch_large_accelerator
@require_bitsandbytes
def test_generation_no_images(self):
model_id = "rhymes-ai/Aria"
model = AriaForConditionalGeneration.from_pretrained(model_id, load_in_4bit=True)
processor = AutoProcessor.from_pretrained(model_id)
# Prepare inputs with no images
inputs = processor(text="Hello, I am", return_tensors="pt").to(torch_device)
# Make sure that `generate` works
_ = model.generate(**inputs, max_new_tokens=20)