transformers/transformers/configuration_ctrl.py
Aymeric Augustin 158e82e061 Sort imports with isort.
This is the result of:

    $ isort --recursive examples templates transformers utils hubconf.py setup.py
2019-12-22 10:57:46 +01:00

132 lines
4.8 KiB
Python

# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Salesforce CTRL configuration """
from __future__ import absolute_import, division, print_function, unicode_literals
import json
import logging
import sys
from io import open
from .configuration_utils import PretrainedConfig
logger = logging.getLogger(__name__)
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP = {"ctrl": "https://storage.googleapis.com/sf-ctrl/pytorch/ctrl-config.json"}
class CTRLConfig(PretrainedConfig):
"""Configuration class to store the configuration of a `CTRLModel`.
Args:
vocab_size: Vocabulary size of `inputs_ids` in `CTRLModel` or a configuration json file.
n_positions: Number of positional embeddings.
n_ctx: Size of the causal mask (usually same as n_positions).
dff: Size of the inner dimension of the FFN.
n_embd: Dimensionality of the embeddings and hidden states.
n_layer: Number of hidden layers in the Transformer encoder.
n_head: Number of attention heads for each attention layer in
the Transformer encoder.
layer_norm_epsilon: epsilon to use in the layer norm layers
resid_pdrop: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attn_pdrop: The dropout ratio for the attention
probabilities.
embd_pdrop: The dropout ratio for the embeddings.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
pretrained_config_archive_map = CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP
def __init__(
self,
vocab_size=246534,
n_positions=256,
n_ctx=256,
n_embd=1280,
dff=8192,
n_layer=48,
n_head=16,
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-6,
initializer_range=0.02,
summary_type="cls_index",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
**kwargs
):
"""Constructs CTRLConfig.
Args:
vocab_size: Vocabulary size of `inputs_ids` in `CTRLModel` or a configuration json file.
n_positions: Number of positional embeddings.
n_ctx: Size of the causal mask (usually same as n_positions).
dff: Size of the inner dimension of the FFN.
n_embd: Dimensionality of the embeddings and hidden states.
n_layer: Number of hidden layers in the Transformer encoder.
n_head: Number of attention heads for each attention layer in
the Transformer encoder.
layer_norm_epsilon: epsilon to use in the layer norm layers
resid_pdrop: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attn_pdrop: The dropout ratio for the attention
probabilities.
embd_pdrop: The dropout ratio for the embeddings.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
super(CTRLConfig, self).__init__(**kwargs)
self.vocab_size = vocab_size
self.n_ctx = n_ctx
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.dff = dff
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_first_dropout = summary_first_dropout
self.summary_proj_to_labels = summary_proj_to_labels
@property
def max_position_embeddings(self):
return self.n_positions
@property
def hidden_size(self):
return self.n_embd
@property
def num_attention_heads(self):
return self.n_head
@property
def num_hidden_layers(self):
return self.n_layer