mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 18:51:14 +06:00

This is the result of: $ isort --recursive examples templates transformers utils hubconf.py setup.py
145 lines
5.7 KiB
Python
145 lines
5.7 KiB
Python
import os
|
|
from argparse import ArgumentParser, Namespace
|
|
from logging import getLogger
|
|
|
|
from transformers import SingleSentenceClassificationProcessor as Processor
|
|
from transformers import TextClassificationPipeline, is_tf_available, is_torch_available
|
|
from transformers.commands import BaseTransformersCLICommand
|
|
|
|
|
|
if not is_tf_available() and not is_torch_available():
|
|
raise ImportError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training")
|
|
|
|
# TF training parameters
|
|
USE_XLA = False
|
|
USE_AMP = False
|
|
|
|
|
|
def train_command_factory(args: Namespace):
|
|
"""
|
|
Factory function used to instantiate serving server from provided command line arguments.
|
|
:return: ServeCommand
|
|
"""
|
|
return TrainCommand(args)
|
|
|
|
|
|
class TrainCommand(BaseTransformersCLICommand):
|
|
@staticmethod
|
|
def register_subcommand(parser: ArgumentParser):
|
|
"""
|
|
Register this command to argparse so it's available for the transformer-cli
|
|
:param parser: Root parser to register command-specific arguments
|
|
:return:
|
|
"""
|
|
train_parser = parser.add_parser("train", help="CLI tool to train a model on a task.")
|
|
|
|
train_parser.add_argument(
|
|
"--train_data",
|
|
type=str,
|
|
required=True,
|
|
help="path to train (and optionally evaluation) dataset as a csv with "
|
|
"tab separated labels and sentences.",
|
|
)
|
|
train_parser.add_argument(
|
|
"--column_label", type=int, default=0, help="Column of the dataset csv file with example labels."
|
|
)
|
|
train_parser.add_argument(
|
|
"--column_text", type=int, default=1, help="Column of the dataset csv file with example texts."
|
|
)
|
|
train_parser.add_argument(
|
|
"--column_id", type=int, default=2, help="Column of the dataset csv file with example ids."
|
|
)
|
|
train_parser.add_argument(
|
|
"--skip_first_row", action="store_true", help="Skip the first row of the csv file (headers)."
|
|
)
|
|
|
|
train_parser.add_argument("--validation_data", type=str, default="", help="path to validation dataset.")
|
|
train_parser.add_argument(
|
|
"--validation_split",
|
|
type=float,
|
|
default=0.1,
|
|
help="if validation dataset is not provided, fraction of train dataset " "to use as validation dataset.",
|
|
)
|
|
|
|
train_parser.add_argument("--output", type=str, default="./", help="path to saved the trained model.")
|
|
|
|
train_parser.add_argument(
|
|
"--task", type=str, default="text_classification", help="Task to train the model on."
|
|
)
|
|
train_parser.add_argument(
|
|
"--model", type=str, default="bert-base-uncased", help="Model's name or path to stored model."
|
|
)
|
|
train_parser.add_argument("--train_batch_size", type=int, default=32, help="Batch size for training.")
|
|
train_parser.add_argument("--valid_batch_size", type=int, default=64, help="Batch size for validation.")
|
|
train_parser.add_argument("--learning_rate", type=float, default=3e-5, help="Learning rate.")
|
|
train_parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon for Adam optimizer.")
|
|
train_parser.set_defaults(func=train_command_factory)
|
|
|
|
def __init__(self, args: Namespace):
|
|
self.logger = getLogger("transformers-cli/training")
|
|
|
|
self.framework = "tf" if is_tf_available() else "torch"
|
|
|
|
os.makedirs(args.output, exist_ok=True)
|
|
assert os.path.isdir(args.output)
|
|
self.output = args.output
|
|
|
|
self.column_label = args.column_label
|
|
self.column_text = args.column_text
|
|
self.column_id = args.column_id
|
|
|
|
self.logger.info("Loading {} pipeline for {}".format(args.task, args.model))
|
|
if args.task == "text_classification":
|
|
self.pipeline = TextClassificationPipeline.from_pretrained(args.model)
|
|
elif args.task == "token_classification":
|
|
raise NotImplementedError
|
|
elif args.task == "question_answering":
|
|
raise NotImplementedError
|
|
|
|
self.logger.info("Loading dataset from {}".format(args.train_data))
|
|
self.train_dataset = Processor.create_from_csv(
|
|
args.train_data,
|
|
column_label=args.column_label,
|
|
column_text=args.column_text,
|
|
column_id=args.column_id,
|
|
skip_first_row=args.skip_first_row,
|
|
)
|
|
self.valid_dataset = None
|
|
if args.validation_data:
|
|
self.logger.info("Loading validation dataset from {}".format(args.validation_data))
|
|
self.valid_dataset = Processor.create_from_csv(
|
|
args.validation_data,
|
|
column_label=args.column_label,
|
|
column_text=args.column_text,
|
|
column_id=args.column_id,
|
|
skip_first_row=args.skip_first_row,
|
|
)
|
|
|
|
self.validation_split = args.validation_split
|
|
self.train_batch_size = args.train_batch_size
|
|
self.valid_batch_size = args.valid_batch_size
|
|
self.learning_rate = args.learning_rate
|
|
self.adam_epsilon = args.adam_epsilon
|
|
|
|
def run(self):
|
|
if self.framework == "tf":
|
|
return self.run_tf()
|
|
return self.run_torch()
|
|
|
|
def run_torch(self):
|
|
raise NotImplementedError
|
|
|
|
def run_tf(self):
|
|
self.pipeline.fit(
|
|
self.train_dataset,
|
|
validation_data=self.valid_dataset,
|
|
validation_split=self.validation_split,
|
|
learning_rate=self.learning_rate,
|
|
adam_epsilon=self.adam_epsilon,
|
|
train_batch_size=self.train_batch_size,
|
|
valid_batch_size=self.valid_batch_size,
|
|
)
|
|
|
|
# Save trained pipeline
|
|
self.pipeline.save_pretrained(self.output)
|