transformers/pytorch_pretrained_bert/tests/modeling_xlnet_test.py
2019-07-02 12:13:17 +02:00

229 lines
9.8 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import unittest
import json
import random
import shutil
import pytest
import torch
from pytorch_pretrained_bert import (XLNetConfig, XLNetModel, XLNetLMHeadModel, XLNetForSequenceClassification, XLNetForQuestionAnswering)
from pytorch_pretrained_bert.modeling_xlnet import PRETRAINED_MODEL_ARCHIVE_MAP
from .model_tests_commons import ConfigTester, create_and_check_commons, ids_tensor
class XLNetModelTest(unittest.TestCase):
class XLNetModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
mem_len=10,
clamp_len=-1,
reuse_len=15,
is_training=True,
use_labels=True,
vocab_size=99,
cutoffs=[10, 50, 80],
hidden_size=32,
num_attention_heads=4,
d_inner=128,
num_hidden_layers=5,
max_position_embeddings=10,
untie_r=True,
bi_data=False,
same_length=False,
seed=1,
type_vocab_size=2,
all_model_classes=(XLNetModel, XLNetLMHeadModel,
XLNetForSequenceClassification, XLNetForQuestionAnswering),
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.mem_len = mem_len
# self.key_len = seq_length + mem_len
self.clamp_len = clamp_len
self.reuse_len = reuse_len
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.cutoffs = cutoffs
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.d_inner = d_inner
self.num_hidden_layers = num_hidden_layers
self.max_position_embeddings = max_position_embeddings
self.bi_data = bi_data
self.untie_r = untie_r
self.same_length = same_length
self.seed = seed
self.type_vocab_size = type_vocab_size
self.all_model_classes = all_model_classes
def prepare_config_and_inputs(self):
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
perm_mask = torch.zeros(self.batch_size, self.seq_length + 1, self.seq_length + 1, dtype=torch.float)
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
target_mapping = torch.zeros(self.batch_size, 1, self.seq_length + 1, dtype=torch.float)
target_mapping[:, 0, -1] = 1.0 # predict last token
inp_q = target_mapping[:, 0, :].clone() # predict last token
# inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
# token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
# input_mask: float32 Tensor in shape [bsz, len], the input mask.
# 0 for real tokens and 1 for padding.
# mems: a list of float32 Tensors in shape [bsz, mem_len, hidden_size], memory
# from previous batches. The length of the list equals num_hidden_layers.
# If None, no memory is used.
# perm_mask: float32 Tensor in shape [bsz, len, len].
# If perm_mask[k, i, j] = 0, i attend to j in batch k;
# if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
# If None, each position attends to all the others.
# target_mapping: float32 Tensor in shape [bsz, num_predict, len].
# If target_mapping[k, i, j] = 1, the i-th predict in batch k is
# on the j-th token.
# Only used during pretraining for partial prediction.
# Set to None during finetuning.
# inp_q: float32 Tensor in shape [bsz, len].
# 1 for tokens with losses and 0 for tokens without losses.
# Only used during pretraining for two-stream attention.
# Set to None during finetuning.
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = XLNetConfig(
vocab_size_or_config_json_file=self.vocab_size,
d_model=self.hidden_size,
n_head=self.num_attention_heads,
d_inner=self.d_inner,
n_layer=self.num_hidden_layers,
untie_r=self.untie_r,
max_position_embeddings=self.max_position_embeddings,
mem_len=self.mem_len,
clamp_len=self.clamp_len,
same_length=self.same_length,
reuse_len=self.reuse_len,
bi_data=self.bi_data)
return (config, input_ids_1, input_ids_2, input_ids_q, perm_mask, target_mapping, inp_q, segment_ids, lm_labels)
def set_seed(self):
random.seed(self.seed)
torch.manual_seed(self.seed)
def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, input_ids_q, perm_mask, target_mapping, inp_q, segment_ids, lm_labels):
model = XLNetLMHeadModel(config)
model.eval()
loss_1, all_logits_1, mems_1 = model(input_ids_1, token_type_ids=segment_ids, labels=lm_labels)
loss_2, all_logits_2, mems_2 = model(input_ids_2, token_type_ids=segment_ids, labels=lm_labels, mems=mems_1)
logits, _ = model(input_ids_q, perm_mask=perm_mask, target_mapping=target_mapping, inp_q=inp_q)
outputs = {
"loss_1": loss_1,
"mems_1": mems_1,
"all_logits_1": all_logits_1,
"loss_2": loss_2,
"mems_2": mems_2,
"all_logits_2": all_logits_2,
}
return outputs
def check_transfo_xl_lm_head_output(self, result):
self.parent.assertListEqual(
list(result["loss_1"].size()),
[])
self.parent.assertListEqual(
list(result["all_logits_1"].size()),
[self.batch_size, self.seq_length, self.vocab_size])
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers)
self.parent.assertListEqual(
list(result["loss_2"].size()),
[])
self.parent.assertListEqual(
list(result["all_logits_2"].size()),
[self.batch_size, self.seq_length, self.vocab_size])
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers)
def create_and_check_xlnet_commons(self, config, input_ids_1, input_ids_2, input_ids_q, perm_mask, target_mapping, inp_q, segment_ids, lm_labels):
inputs_dict = {'input_ids': input_ids_1}
create_and_check_commons(self, config, inputs_dict)
def test_default(self):
self.run_tester(XLNetModelTest.XLNetModelTester(self))
def test_config(self):
config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)
config_tester.run_common_tests()
@pytest.mark.slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/pytorch_pretrained_bert_test/"
for model_name in list(PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = XLNetModel.from_pretrained(model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
self.assertIsNotNone(model)
def run_tester(self, tester):
tester.set_seed()
config_and_inputs = tester.prepare_config_and_inputs()
output_result = tester.create_transfo_xl_lm_head(*config_and_inputs)
tester.check_transfo_xl_lm_head_output(output_result)
tester.set_seed()
config_and_inputs = tester.prepare_config_and_inputs()
tester.create_and_check_xlnet_commons(*config_and_inputs)
@classmethod
def mask_tensor(cls, shape, vocab_size, rng=None, name=None):
"""Creates a tensor with padding on the right (0.0 for )."""
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()
if __name__ == "__main__":
unittest.main()