mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-18 12:08:22 +06:00
364 lines
15 KiB
Python
364 lines
15 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""PyTorch BERT model."""
|
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import logging
|
|
import os
|
|
import json
|
|
import copy
|
|
from io import open
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import CrossEntropyLoss, MSELoss
|
|
|
|
from .file_utils import cached_path
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
CONFIG_NAME = "config.json"
|
|
WEIGHTS_NAME = "pytorch_model.bin"
|
|
TF_WEIGHTS_NAME = 'model.ckpt'
|
|
|
|
|
|
class PretrainedConfig(object):
|
|
""" An abstract class to handle dowloading a model pretrained config.
|
|
"""
|
|
pretrained_config_archive_map = {}
|
|
|
|
def __init__(self, **kwargs):
|
|
self.finetuning_task = kwargs.pop('finetuning_task', None)
|
|
self.num_labels = kwargs.pop('num_labels', 2)
|
|
self.output_attentions = kwargs.pop('output_attentions', False)
|
|
self.output_hidden_states = kwargs.pop('output_hidden_states', False)
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
|
"""
|
|
Instantiate a PretrainedConfig from a pre-trained model configuration.
|
|
|
|
Params:
|
|
pretrained_model_name_or_path: either:
|
|
- a str with the name of a pre-trained model to load selected in the list of:
|
|
. `xlnet-large-cased`
|
|
- a path or url to a pretrained model archive containing:
|
|
. `config.json` a configuration file for the model
|
|
cache_dir: an optional path to a folder in which the pre-trained model configuration will be cached.
|
|
"""
|
|
cache_dir = kwargs.get('cache_dir', None)
|
|
kwargs.pop('cache_dir', None)
|
|
|
|
if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
|
|
config_file = cls.pretrained_config_archive_map[pretrained_model_name_or_path]
|
|
else:
|
|
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
|
|
# redirect to the cache, if necessary
|
|
try:
|
|
resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
|
|
except EnvironmentError:
|
|
if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
|
|
logger.error(
|
|
"Couldn't reach server at '{}' to download pretrained model configuration file.".format(
|
|
config_file))
|
|
else:
|
|
logger.error(
|
|
"Model name '{}' was not found in model name list ({}). "
|
|
"We assumed '{}' was a path or url but couldn't find any file "
|
|
"associated to this path or url.".format(
|
|
pretrained_model_name_or_path,
|
|
', '.join(cls.pretrained_config_archive_map.keys()),
|
|
config_file))
|
|
return None
|
|
if resolved_config_file == config_file:
|
|
logger.info("loading configuration file {}".format(config_file))
|
|
else:
|
|
logger.info("loading configuration file {} from cache at {}".format(
|
|
config_file, resolved_config_file))
|
|
|
|
# Load config
|
|
config = cls.from_json_file(resolved_config_file)
|
|
|
|
# Update config with kwargs if needed
|
|
to_remove = []
|
|
for key, value in kwargs.items():
|
|
if hasattr(config, key):
|
|
setattr(config, key, value)
|
|
to_remove.append(key)
|
|
for key in to_remove:
|
|
kwargs.pop(key, None)
|
|
|
|
logger.info("Model config {}".format(config))
|
|
return config
|
|
|
|
@classmethod
|
|
def from_dict(cls, json_object):
|
|
"""Constructs a `Config` from a Python dictionary of parameters."""
|
|
config = cls(vocab_size_or_config_json_file=-1)
|
|
for key, value in json_object.items():
|
|
config.__dict__[key] = value
|
|
return config
|
|
|
|
@classmethod
|
|
def from_json_file(cls, json_file):
|
|
"""Constructs a `BertConfig` from a json file of parameters."""
|
|
with open(json_file, "r", encoding='utf-8') as reader:
|
|
text = reader.read()
|
|
return cls.from_dict(json.loads(text))
|
|
|
|
def __eq__(self, other):
|
|
return self.__dict__ == other.__dict__
|
|
|
|
def __repr__(self):
|
|
return str(self.to_json_string())
|
|
|
|
def to_dict(self):
|
|
"""Serializes this instance to a Python dictionary."""
|
|
output = copy.deepcopy(self.__dict__)
|
|
return output
|
|
|
|
def to_json_string(self):
|
|
"""Serializes this instance to a JSON string."""
|
|
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
|
|
|
|
def to_json_file(self, json_file_path):
|
|
""" Save this instance to a json file."""
|
|
with open(json_file_path, "w", encoding='utf-8') as writer:
|
|
writer.write(self.to_json_string())
|
|
|
|
|
|
class PreTrainedModel(nn.Module):
|
|
""" An abstract class to handle storing model config and
|
|
a simple interface for dowloading and loading pretrained models.
|
|
"""
|
|
config_class = PretrainedConfig
|
|
pretrained_model_archive_map = {}
|
|
load_tf_weights = lambda model, config, path: None
|
|
base_model_prefix = ""
|
|
|
|
def __init__(self, config, *inputs, **kwargs):
|
|
super(PreTrainedModel, self).__init__()
|
|
if not isinstance(config, PretrainedConfig):
|
|
raise ValueError(
|
|
"Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
|
|
"To create a model from a pretrained model use "
|
|
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
|
self.__class__.__name__, self.__class__.__name__
|
|
))
|
|
# Save config in model
|
|
self.config = config
|
|
|
|
def prune_heads(self, heads_to_prune):
|
|
""" Prunes heads of the base model.
|
|
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
|
"""
|
|
model_to_prune = getattr(self, self.base_model_prefix, self) # get the base model if needed
|
|
model_to_prune._prune_heads(heads_to_prune)
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
|
|
"""
|
|
Instantiate a PreTrainedModel from a pre-trained model file or a pytorch state dict.
|
|
Download and cache the pre-trained model file if needed.
|
|
|
|
Params:
|
|
pretrained_model_name_or_path: either:
|
|
- a str with the name of a pre-trained model to load, or
|
|
- a path or url to a pretrained model archive containing:
|
|
. `config.json` a configuration file for the model
|
|
. `pytorch_model.bin` a PyTorch dump of a XLNetForPreTraining instance
|
|
- a path or url to a tensorflow pretrained model checkpoint containing:
|
|
. `config.json` a configuration file for the model
|
|
. `model.chkpt` a TensorFlow checkpoint
|
|
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
|
|
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
|
|
state_dict: an optional state dictionnary (collections.OrderedDict object) to use
|
|
instead of Google pre-trained models
|
|
*inputs, **kwargs: additional input for the specific XLNet class
|
|
(ex: num_labels for XLNetForSequenceClassification)
|
|
"""
|
|
state_dict = kwargs.pop('state_dict', None)
|
|
cache_dir = kwargs.pop('cache_dir', None)
|
|
from_tf = kwargs.pop('from_tf', None)
|
|
|
|
# Load config
|
|
config = cls.config_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
|
|
|
|
# Load model
|
|
if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
|
|
archive_file = cls.pretrained_model_archive_map[pretrained_model_name_or_path]
|
|
else:
|
|
if from_tf:
|
|
# Directly load from a TensorFlow checkpoint
|
|
archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
|
|
else:
|
|
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
|
|
# redirect to the cache, if necessary
|
|
try:
|
|
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
|
|
except EnvironmentError:
|
|
if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
|
|
logger.error(
|
|
"Couldn't reach server at '{}' to download pretrained weights.".format(
|
|
archive_file))
|
|
else:
|
|
logger.error(
|
|
"Model name '{}' was not found in model name list ({}). "
|
|
"We assumed '{}' was a path or url but couldn't find any file "
|
|
"associated to this path or url.".format(
|
|
pretrained_model_name_or_path,
|
|
', '.join(cls.pretrained_model_archive_map.keys()),
|
|
archive_file))
|
|
return None
|
|
if resolved_archive_file == archive_file:
|
|
logger.info("loading weights file {}".format(archive_file))
|
|
else:
|
|
logger.info("loading weights file {} from cache at {}".format(
|
|
archive_file, resolved_archive_file))
|
|
|
|
# Instantiate model.
|
|
model = cls(config)
|
|
|
|
if state_dict is None and not from_tf:
|
|
state_dict = torch.load(resolved_archive_file, map_location='cpu')
|
|
if from_tf:
|
|
# Directly load from a TensorFlow checkpoint
|
|
return cls.load_tf_weights(model, config, resolved_archive_file[:-6]) # Remove the '.index'
|
|
|
|
# Load from a PyTorch state_dict
|
|
missing_keys = []
|
|
unexpected_keys = []
|
|
error_msgs = []
|
|
# copy state_dict so _load_from_state_dict can modify it
|
|
metadata = getattr(state_dict, '_metadata', None)
|
|
state_dict = state_dict.copy()
|
|
if metadata is not None:
|
|
state_dict._metadata = metadata
|
|
|
|
def load(module, prefix=''):
|
|
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
|
module._load_from_state_dict(
|
|
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
|
|
for name, child in module._modules.items():
|
|
if child is not None:
|
|
load(child, prefix + name + '.')
|
|
|
|
# Make sure we are able to load base models as well as derived models (with heads)
|
|
start_prefix = ''
|
|
model_to_load = model
|
|
if not hasattr(model, cls.base_model_prefix) and any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
|
|
start_prefix = cls.base_model_prefix + '.'
|
|
if hasattr(model, cls.base_model_prefix) and not any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
|
|
model_to_load = getattr(model, cls.base_model_prefix)
|
|
|
|
load(model_to_load, prefix=start_prefix)
|
|
if len(missing_keys) > 0:
|
|
logger.info("Weights of {} not initialized from pretrained model: {}".format(
|
|
model.__class__.__name__, missing_keys))
|
|
if len(unexpected_keys) > 0:
|
|
logger.info("Weights from pretrained model not used in {}: {}".format(
|
|
model.__class__.__name__, unexpected_keys))
|
|
if len(error_msgs) > 0:
|
|
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
|
|
model.__class__.__name__, "\n\t".join(error_msgs)))
|
|
|
|
if hasattr(model, 'tie_weights'):
|
|
model.tie_weights() # make sure word embedding weights are still tied
|
|
|
|
return model
|
|
|
|
|
|
def prune_linear_layer(layer, index, dim=0):
|
|
""" Prune a linear layer (a model parameters) to keep only entries in index.
|
|
Return the pruned layer as a new layer with requires_grad=True.
|
|
Used to remove heads.
|
|
"""
|
|
index = index.to(layer.weight.device)
|
|
W = layer.weight.index_select(dim, index).clone().detach()
|
|
if layer.bias is not None:
|
|
if dim == 1:
|
|
b = layer.bias.clone().detach()
|
|
else:
|
|
b = layer.bias[index].clone().detach()
|
|
new_size = list(layer.weight.size())
|
|
new_size[dim] = len(index)
|
|
new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
|
|
new_layer.weight.requires_grad = False
|
|
new_layer.weight.copy_(W.contiguous())
|
|
new_layer.weight.requires_grad = True
|
|
if layer.bias is not None:
|
|
new_layer.bias.requires_grad = False
|
|
new_layer.bias.copy_(b.contiguous())
|
|
new_layer.bias.requires_grad = True
|
|
return new_layer
|
|
|
|
|
|
class Conv1D(nn.Module):
|
|
""" Conv1D layer as defined by Alec Radford for GPT (and also used in GPT-2)
|
|
Basically works like a Linear layer but the weights are transposed
|
|
"""
|
|
def __init__(self, nf, nx):
|
|
super(Conv1D, self).__init__()
|
|
self.nf = nf
|
|
w = torch.empty(nx, nf)
|
|
nn.init.normal_(w, std=0.02)
|
|
self.weight = nn.Parameter(w)
|
|
self.bias = nn.Parameter(torch.zeros(nf))
|
|
|
|
def forward(self, x):
|
|
size_out = x.size()[:-1] + (self.nf,)
|
|
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
|
|
x = x.view(*size_out)
|
|
return x
|
|
|
|
|
|
def prune_conv1d_layer(layer, index, dim=1):
|
|
""" Prune a Conv1D layer (a model parameters) to keep only entries in index.
|
|
A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed.
|
|
Return the pruned layer as a new layer with requires_grad=True.
|
|
Used to remove heads.
|
|
"""
|
|
index = index.to(layer.weight.device)
|
|
W = layer.weight.index_select(dim, index).clone().detach()
|
|
if dim == 0:
|
|
b = layer.bias.clone().detach()
|
|
else:
|
|
b = layer.bias[index].clone().detach()
|
|
new_size = list(layer.weight.size())
|
|
new_size[dim] = len(index)
|
|
new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
|
|
new_layer.weight.requires_grad = False
|
|
new_layer.weight.copy_(W.contiguous())
|
|
new_layer.weight.requires_grad = True
|
|
new_layer.bias.requires_grad = False
|
|
new_layer.bias.copy_(b.contiguous())
|
|
new_layer.bias.requires_grad = True
|
|
return new_layer
|
|
|
|
|
|
def prune_layer(layer, index, dim=None):
|
|
""" Prune a Conv1D or nn.Linear layer (a model parameters) to keep only entries in index.
|
|
Return the pruned layer as a new layer with requires_grad=True.
|
|
Used to remove heads.
|
|
"""
|
|
if isinstance(layer, nn.Linear):
|
|
return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
|
|
elif isinstance(layer, Conv1D):
|
|
return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
|
|
else:
|
|
raise ValueError("Can't prune layer of class {}".format(layer.__class__))
|