transformers/tests/models/paligemma/test_modeling_paligemma.py
Pablo Montalvo 1360801a69
Add PaliGemma (#30814)
* add new model like

* add state dict slicing + new model config

* update palma config and weights, passes vision activations

* fix

* update

* reorder loading/unpacking

* clean up

* add debug statements

* change device

* fix

* debugging

* fix noncausal mask

* fixup sdpa + causal mask

* fix activation function

* remove debug before changing modeling file

* add variants

* debug attention mask in generate

* revert to non-debug sdpa

* revert gemma modifications

* add custom language modeling

* use Processor

* add language modeling file to init

* try thin wrapper around generate

* Update

* update mask

* breakpoints galore

* remove conflict

* switch to left-padding

* add incomplete model doc

* add paligemma global files

* batch rename paligemma

* make generation match outputs and captioning

* style

* style

* remove copied from + doc

* remove more copied from

* remove copy from projector

* minor fix

* update config and style

* add readme - dummy

* CORRECT image captioning

* moving to args

* add siglip proper + fix merging image + text features

* take update_causal_mask from upstream

* remove breakpoint

* leverage AutoModel

* fix input_ids slicing

* make siglip head conditional

* remove encoder_decoder value

* remove unneeded modeling file

* add commented 4d attention mask

* FIXED generation with 4D mask

* Update src/transformers/models/siglip/modeling_siglip.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix left padding detection

* shuffle order of verifications

* fix missing labels for training

* fix

* vectorize merging of features, improve slicing

* improve testing before conversion

* handle merging in processor

* image token index depends on checkpoint

* add variants, save processor too

* save processors, base tokenizer off spm file

* expand model embeddings due to additional image token

* pass image processing args

* add convert rgb to siglip processor

* add \n token separately

* fix tokenizer and prompts

* fix docstrings

* change to camel

* fix casing

* debug pos_ids and sdpa

* pass and use cache_position

* add flag for newline tokenization

* Update src/transformers/models/paligemma/processing_paligemma.py

Co-authored-by: Merve Noyan <merveenoyan@gmail.com>

* simplify conversion script

* add copied from

* add precision to conversion script

* Update src/transformers/models/paligemma/modeling_paligemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* clean up

* Shift attention mask from `1:`

After discussion with @molbap

* add docs, fix quality

* quality, tied weights inheritance, and logits/label alignment

* fix more tests

* pass attn_implementation to language model correctly

* add SiglipVisionTransformer to no split modules

* skip paligemma test for sdpa dispatch to flash

* skip incompatible tests

* quality

* [broken archive maps]

* Apply suggestions

- remove archive lists
- style
- take shape of inputs_embeds for batch

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/utils/dummy_pt_objects.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* simplify conversion script

* add suggestions

* add suggestions

* add copied from

* fix

* move labels out

* revert

* fix

* remove placeholder labels if None

* use cache_position

* fix quality + docstrings

* fix quality

* fix paligemma 4d gemma mask incompatibility

* fix config docstring

* fix query and attn_mask dtype

---------

Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Merve Noyan <merveenoyan@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2024-05-14 22:07:15 +02:00

427 lines
17 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch PaliGemma model. """
import gc
import unittest
import requests
from parameterized import parameterized
from transformers import (
PaliGemmaConfig,
PaliGemmaForConditionalGeneration,
PaliGemmaProcessor,
is_torch_available,
is_vision_available,
)
from transformers.testing_utils import (
require_bitsandbytes,
require_torch,
require_torch_sdpa,
slow,
torch_device,
)
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
if is_torch_available():
import torch
else:
is_torch_greater_or_equal_than_2_0 = False
if is_vision_available():
from PIL import Image
class PaliGemmaVisionText2TextModelTester:
def __init__(
self,
parent,
ignore_index=-100,
image_token_index=98,
projector_hidden_act="gelu",
seq_length=7,
vision_feature_select_strategy="default",
vision_feature_layer=-1,
projection_dim=32,
text_config={
"model_type": "gemma",
"seq_length": 128,
"is_training": True,
# "use_input_mask": True,
"use_token_type_ids": False,
"use_labels": True,
"vocab_size": 99,
"hidden_size": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"num_key_value_heads": 1,
"head_dim": 8,
"intermediate_size": 37,
"hidden_activation": "gelu_pytorch_tanh",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"type_vocab_size": 16,
"type_sequence_label_size": 2,
"initializer_range": 0.02,
"num_labels": 3,
"num_choices": 4,
"pad_token_id": 0,
},
is_training=True,
vision_config={
"use_labels": True,
"image_size": 30,
"patch_size": 2,
"num_image_tokens": 4,
"num_channels": 3,
"is_training": True,
"hidden_size": 32,
"projection_dim": 32,
"num_key_value_heads": 1,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"dropout": 0.1,
"attention_dropout": 0.1,
"initializer_range": 0.02,
},
use_cache=False,
):
self.parent = parent
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
self.text_config = text_config
self.vision_config = vision_config
self.seq_length = seq_length
self.projection_dim = projection_dim
self.num_hidden_layers = text_config["num_hidden_layers"]
self.vocab_size = text_config["vocab_size"]
self.hidden_size = text_config["hidden_size"]
self.num_attention_heads = text_config["num_attention_heads"]
self.is_training = is_training
self.batch_size = 3
self.num_channels = vision_config["num_channels"]
self.image_size = vision_config["image_size"]
self.encoder_seq_length = seq_length
self.use_cache = use_cache
def get_config(self):
return PaliGemmaConfig(
text_config=self.text_config,
vision_config=self.vision_config,
ignore_index=self.ignore_index,
image_token_index=self.image_token_index,
projector_hidden_act=self.projector_hidden_act,
projection_dim=self.projection_dim,
vision_feature_select_strategy=self.vision_feature_select_strategy,
vision_feature_layer=self.vision_feature_layer,
)
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[
self.batch_size,
self.vision_config["num_channels"],
self.vision_config["image_size"],
self.vision_config["image_size"],
]
)
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
attention_mask = input_ids.ne(1).to(torch_device)
# setting the 4 first tokens to be image
input_ids[:, :4] = config.image_token_index
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class PaliGemmaForConditionalGenerationModelTest(ModelTesterMixin, unittest.TestCase):
"""
Model tester for `PaliGemmaForConditionalGeneration`.
"""
all_model_classes = (PaliGemmaForConditionalGeneration,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_torchscript = False
test_head_masking = False
def setUp(self):
self.model_tester = PaliGemmaVisionText2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=PaliGemmaConfig, has_text_modality=False)
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
def test_cpu_offload(self):
pass
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
def test_disk_offload_bin(self):
pass
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
def test_disk_offload_safetensors(self):
pass
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
def test_model_parallelism(self):
pass
@require_torch_sdpa
@slow
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
self.skipTest(
"Due to custom causal mask, there is a slightly too big difference between eager and sdpa in bfloat16."
)
@unittest.skip(
reason="PaliGemmma's SigLip encoder uses the same initialization scheme as the Flax original implementation"
)
def test_initialization(self):
pass
# TODO extend valid outputs to include this test @Molbap
@unittest.skip("PaliGemma has currently one output format.")
def test_model_outputs_equivalence(self):
pass
# TODO fix the loss = nan in the testing configuration chosen @Molbap
@unittest.skip(reason="Edge case giving loss nan values in testing configuration.")
def test_determinism(self):
pass
@unittest.skip(reason="PaliGemma does not use feedforward chunking.")
def test_feed_forward_chunking(self):
pass
@unittest.skip(reason="PaliGemma does not support low_cpu_mem_usage.")
def test_save_load_low_cpu_mem_usage(self):
pass
@unittest.skip(reason="PaliGemma does not support low_cpu_mem_usage.")
def test_save_load_low_cpu_mem_usage_checkpoints(self):
pass
@unittest.skip(reason="PaliGemma does not support low_cpu_mem_usage.")
def test_save_load_low_cpu_mem_usage_no_safetensors(self):
pass
@slow
@require_torch
class PaliGemmaForConditionalGenerationIntegrationTest(unittest.TestCase):
def setUp(self):
self.processor = PaliGemmaProcessor.from_pretrained("gv-hf/PaliGemma-test-224px-hf")
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
@slow
@require_bitsandbytes
def test_small_model_integration_test(self):
# Let' s make sure we test the preprocessing to replace what is used
model = PaliGemmaForConditionalGeneration.from_pretrained("gv-hf/PaliGemma-test-224px-hf")
prompt = ""
image_file = (
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
)
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = self.processor(text=prompt, images=raw_image, return_tensors="pt")
# fmt: off
EXPECTED_INPUT_IDS = torch.tensor([[256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
256000, 256000, 256000, 256000, 2, 108]])
# fmt: on
self.assertTrue(torch.equal(inputs["input_ids"], EXPECTED_INPUT_IDS))
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = "\ncow standing on the beach" # fmt: skip
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_bitsandbytes
def test_small_model_integration_test_paligemma(self):
# Let' s make sure we test the preprocessing to replace what is used
model_id = "gv-hf/PaliGemma-test-224px-hf"
model = PaliGemmaForConditionalGeneration.from_pretrained("gv-hf/PaliGemma-test-224px-hf")
processor = PaliGemmaProcessor.from_pretrained(model_id)
prompt = "answer en Where is the cow standing?"
image_file = (
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
)
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(text=prompt, images=raw_image, return_tensors="pt").to(torch.float16)
output = model.generate(**inputs, max_new_tokens=900, do_sample=False)
EXPECTED_DECODED_TEXT = "answer en Where is the cow standing?\nbeach" # fmt: skip
self.assertEqual(
processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_bitsandbytes
def test_small_model_integration_test_paligemma_batched(self):
# Let' s make sure we test the preprocessing to replace what is used
model_id = "gv-hf/PaliGemma-test-224px-hf"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
processor = PaliGemmaProcessor.from_pretrained(model_id)
prompts = [
"answer en Where is the cow standing?",
"",
]
image1 = Image.open(
requests.get(
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
stream=True,
).raw
)
image2 = image1
inputs = processor(text=prompts, images=[image1, image2], return_tensors="pt", padding=True)
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = ["answer en Where is the cow standing?\nbeach", "\ncow standing on the beach"] # fmt: skip
self.assertEqual(processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT)
@slow
@require_bitsandbytes
def test_small_model_integration_test_batch(self):
# Let' s make sure we test the preprocessing to replace what is used
model = PaliGemmaForConditionalGeneration.from_pretrained("gv-hf/PaliGemma-test-224px-hf")
# The first batch is longer in terms of text, the second will be padded.
prompts = [
"answer en Where is the cow standing?",
"",
]
image1 = Image.open(
requests.get(
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
stream=True,
).raw
)
image2 = image1
inputs = self.processor(text=prompts, images=[image1, image2], return_tensors="pt", padding=True)
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = ["answer en Where is the cow standing?\nbeach", "\ncow standing on the beach"] # fmt: skip
self.assertEqual(self.processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT)
@slow
@require_bitsandbytes
def test_paligemma_index_error_bug(self):
# This is a reproducer of https://github.com/huggingface/transformers/pull/28032 and makes sure it does not happen anymore
# Please refer to that PR, or specifically https://github.com/huggingface/transformers/pull/28032#issuecomment-1860650043 for
# more details
model_id = "gv-hf/PaliGemma-test-224px-hf"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
processor = PaliGemmaProcessor.from_pretrained(model_id)
# Simulate a super long prompt
prompt = "\n" * 200
image_file = (
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
)
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(
text=prompt,
images=raw_image,
return_tensors="pt",
).to(torch.float16)
# Make sure that `generate` works
_ = model.generate(**inputs, max_new_tokens=20)