mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-03 03:31:05 +06:00
1449 lines
67 KiB
Python
1449 lines
67 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The Facebook, Inc and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" TF 2.0 Blenderbot model."""
|
|
|
|
|
|
import os
|
|
import random
|
|
import warnings
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import tensorflow as tf
|
|
|
|
from ...activations_tf import get_tf_activation
|
|
from ...modeling_tf_outputs import (
|
|
TFBaseModelOutput,
|
|
TFBaseModelOutputWithPastAndCrossAttentions,
|
|
TFSeq2SeqLMOutput,
|
|
TFSeq2SeqModelOutput,
|
|
)
|
|
|
|
# Public API
|
|
from ...modeling_tf_utils import (
|
|
DUMMY_INPUTS,
|
|
TFCausalLanguageModelingLoss,
|
|
TFPreTrainedModel,
|
|
TFSharedEmbeddings,
|
|
TFWrappedEmbeddings,
|
|
keras_serializable,
|
|
unpack_inputs,
|
|
)
|
|
from ...tf_utils import shape_list, stable_softmax
|
|
from ...utils import (
|
|
add_code_sample_docstrings,
|
|
add_end_docstrings,
|
|
add_start_docstrings,
|
|
add_start_docstrings_to_model_forward,
|
|
logging,
|
|
replace_return_docstrings,
|
|
)
|
|
from .configuration_blenderbot import BlenderbotConfig
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
_CHECKPOINT_FOR_DOC = "facebook/blenderbot-400M-distill"
|
|
_CONFIG_FOR_DOC = "BlenderbotConfig"
|
|
_TOKENIZER_FOR_DOC = "BlenderbotTokenizer"
|
|
|
|
|
|
LARGE_NEGATIVE = -1e8
|
|
|
|
|
|
# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
|
|
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
|
pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
|
|
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
|
|
start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id)
|
|
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
|
|
# replace possible -100 values in labels by `pad_token_id`
|
|
shifted_input_ids = tf.where(
|
|
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
|
|
)
|
|
|
|
if tf.executing_eagerly():
|
|
# "Verify that `labels` has only positive values and -100"
|
|
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
|
|
|
|
# Make sure the assertion op is called by wrapping the result in an identity no-op
|
|
with tf.control_dependencies([assert_gte0]):
|
|
shifted_input_ids = tf.identity(shifted_input_ids)
|
|
|
|
return shifted_input_ids
|
|
|
|
|
|
# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
|
|
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
|
|
"""
|
|
Make causal mask used for bi-directional self-attention.
|
|
"""
|
|
bsz = input_ids_shape[0]
|
|
tgt_len = input_ids_shape[1]
|
|
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
|
|
mask_cond = tf.range(shape_list(mask)[-1])
|
|
|
|
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
|
|
|
|
if past_key_values_length > 0:
|
|
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
|
|
|
|
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
|
|
|
|
|
|
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
|
|
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
|
|
"""
|
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
|
"""
|
|
src_len = shape_list(mask)[1]
|
|
tgt_len = tgt_len if tgt_len is not None else src_len
|
|
one_cst = tf.constant(1.0)
|
|
mask = tf.cast(mask, dtype=one_cst.dtype)
|
|
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
|
|
|
|
return (one_cst - expanded_mask) * LARGE_NEGATIVE
|
|
|
|
|
|
class TFBlenderbotLearnedPositionalEmbedding(TFSharedEmbeddings):
|
|
"""
|
|
This module learns positional embeddings up to a fixed maximum size.
|
|
"""
|
|
|
|
def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
|
|
super().__init__(num_embeddings, embedding_dim, **kwargs)
|
|
|
|
def call(
|
|
self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: Optional[tf.Tensor] = None
|
|
):
|
|
"""Input is expected to be of size [bsz x seqlen]."""
|
|
if position_ids is None:
|
|
seq_len = input_shape[1]
|
|
position_ids = tf.range(past_key_values_length, seq_len + past_key_values_length, delta=1, name="range")
|
|
return super().call(position_ids)
|
|
|
|
|
|
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Blenderbot
|
|
class TFBlenderbotAttention(tf.keras.layers.Layer):
|
|
"""Multi-headed attention from "Attention Is All You Need"""
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
num_heads: int,
|
|
dropout: float = 0.0,
|
|
is_decoder: bool = False,
|
|
bias: bool = True,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.embed_dim = embed_dim
|
|
|
|
self.num_heads = num_heads
|
|
self.dropout = tf.keras.layers.Dropout(dropout)
|
|
self.head_dim = embed_dim // num_heads
|
|
if (self.head_dim * num_heads) != self.embed_dim:
|
|
raise ValueError(
|
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
|
f" and `num_heads`: {num_heads})."
|
|
)
|
|
self.scaling = self.head_dim**-0.5
|
|
self.is_decoder = is_decoder
|
|
|
|
self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
|
|
self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
|
|
self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
|
|
self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
|
|
|
|
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
|
|
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
|
|
|
|
def call(
|
|
self,
|
|
hidden_states: tf.Tensor,
|
|
key_value_states: Optional[tf.Tensor] = None,
|
|
past_key_value: Optional[Tuple[Tuple[tf.Tensor]]] = None,
|
|
attention_mask: Optional[tf.Tensor] = None,
|
|
layer_head_mask: Optional[tf.Tensor] = None,
|
|
training: Optional[bool] = False,
|
|
) -> Tuple[tf.Tensor, Optional[tf.Tensor]]:
|
|
"""Input shape: Batch x Time x Channel"""
|
|
|
|
# if key_value_states are provided this layer is used as a cross-attention layer
|
|
# for the decoder
|
|
is_cross_attention = key_value_states is not None
|
|
bsz, tgt_len, embed_dim = shape_list(hidden_states)
|
|
|
|
# get query proj
|
|
query_states = self.q_proj(hidden_states) * self.scaling
|
|
# get key, value proj
|
|
if is_cross_attention and past_key_value is not None:
|
|
# reuse k,v, cross_attentions
|
|
key_states = past_key_value[0]
|
|
value_states = past_key_value[1]
|
|
elif is_cross_attention:
|
|
# cross_attentions
|
|
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
|
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
|
elif past_key_value is not None:
|
|
# reuse k, v, self_attention
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
|
key_states = tf.concat([past_key_value[0], key_states], axis=2)
|
|
value_states = tf.concat([past_key_value[1], value_states], axis=2)
|
|
else:
|
|
# self_attention
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
|
|
|
if self.is_decoder:
|
|
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
|
|
# Further calls to cross_attention layer can then reuse all cross-attention
|
|
# key/value_states (first "if" case)
|
|
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
|
|
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
|
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
|
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
|
past_key_value = (key_states, value_states)
|
|
|
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
|
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
|
|
key_states = tf.reshape(key_states, proj_shape)
|
|
value_states = tf.reshape(value_states, proj_shape)
|
|
|
|
src_len = shape_list(key_states)[1]
|
|
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
|
|
|
|
# The tf.debugging asserts are not compliant with XLA then they
|
|
# have to be disabled in other modes than eager.
|
|
if tf.executing_eagerly():
|
|
tf.debugging.assert_equal(
|
|
shape_list(attn_weights),
|
|
[bsz * self.num_heads, tgt_len, src_len],
|
|
message=(
|
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
|
f" {shape_list(attn_weights)}"
|
|
),
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
# The tf.debugging asserts are not compliant with XLA then they
|
|
# have to be disabled in other modes than eager.
|
|
if tf.executing_eagerly():
|
|
tf.debugging.assert_equal(
|
|
shape_list(attention_mask),
|
|
[bsz, 1, tgt_len, src_len],
|
|
message=(
|
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
|
f" {shape_list(attention_mask)}"
|
|
),
|
|
)
|
|
|
|
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
|
|
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
|
|
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
|
|
|
|
attn_weights = stable_softmax(attn_weights, axis=-1)
|
|
|
|
if layer_head_mask is not None:
|
|
# The tf.debugging asserts are not compliant with XLA then they
|
|
# have to be disabled in other modes than eager.
|
|
if tf.executing_eagerly():
|
|
tf.debugging.assert_equal(
|
|
shape_list(layer_head_mask),
|
|
[self.num_heads],
|
|
message=(
|
|
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
|
|
f" {shape_list(layer_head_mask)}"
|
|
),
|
|
)
|
|
|
|
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
|
|
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
|
|
)
|
|
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
|
|
|
|
attn_probs = self.dropout(attn_weights, training=training)
|
|
attn_output = tf.matmul(attn_probs, value_states)
|
|
|
|
# The tf.debugging asserts are not compliant with XLA then they
|
|
# have to be disabled in other modes than eager.
|
|
if tf.executing_eagerly():
|
|
tf.debugging.assert_equal(
|
|
shape_list(attn_output),
|
|
[bsz * self.num_heads, tgt_len, self.head_dim],
|
|
message=(
|
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
|
f" {shape_list(attn_output)}"
|
|
),
|
|
)
|
|
|
|
attn_output = tf.transpose(
|
|
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
|
|
)
|
|
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
|
|
|
|
attn_output = self.out_proj(attn_output)
|
|
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
|
|
# Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartEncoderLayer with MBart->Blenderbot
|
|
class TFBlenderbotEncoderLayer(tf.keras.layers.Layer):
|
|
def __init__(self, config: BlenderbotConfig, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.embed_dim = config.d_model
|
|
self.self_attn = TFBlenderbotAttention(
|
|
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
|
|
)
|
|
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
|
|
self.dropout = tf.keras.layers.Dropout(config.dropout)
|
|
self.activation_fn = get_tf_activation(config.activation_function)
|
|
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
|
|
self.fc1 = tf.keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
|
|
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
|
|
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
|
|
|
|
def call(
|
|
self,
|
|
hidden_states: tf.Tensor,
|
|
attention_mask: tf.Tensor,
|
|
layer_head_mask: tf.Tensor,
|
|
training: Optional[bool] = False,
|
|
):
|
|
"""
|
|
Args:
|
|
hidden_states (`tf.Tensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
|
|
attention_mask (`tf.Tensor`): attention mask of size
|
|
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
|
|
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
|
|
*(encoder_attention_heads,)*
|
|
"""
|
|
residual = hidden_states
|
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
hidden_states, self_attn_weights, _ = self.self_attn(
|
|
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
|
|
)
|
|
|
|
# The tf.debugging asserts are not compliant with XLA then they
|
|
# have to be disabled in other modes than eager.
|
|
if tf.executing_eagerly():
|
|
tf.debugging.assert_equal(
|
|
shape_list(hidden_states),
|
|
shape_list(residual),
|
|
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
|
|
)
|
|
|
|
hidden_states = self.dropout(hidden_states, training=training)
|
|
hidden_states = residual + hidden_states
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
|
hidden_states = self.activation_dropout(hidden_states, training=training)
|
|
hidden_states = self.fc2(hidden_states)
|
|
hidden_states = self.dropout(hidden_states, training=training)
|
|
hidden_states = residual + hidden_states
|
|
|
|
return hidden_states, self_attn_weights
|
|
|
|
|
|
# Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartDecoderLayer with MBart->Blenderbot
|
|
class TFBlenderbotDecoderLayer(tf.keras.layers.Layer):
|
|
def __init__(self, config: BlenderbotConfig, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.embed_dim = config.d_model
|
|
self.self_attn = TFBlenderbotAttention(
|
|
embed_dim=self.embed_dim,
|
|
num_heads=config.decoder_attention_heads,
|
|
dropout=config.attention_dropout,
|
|
name="self_attn",
|
|
is_decoder=True,
|
|
)
|
|
self.dropout = tf.keras.layers.Dropout(config.dropout)
|
|
self.activation_fn = get_tf_activation(config.activation_function)
|
|
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
|
|
|
|
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
|
|
self.encoder_attn = TFBlenderbotAttention(
|
|
self.embed_dim,
|
|
config.decoder_attention_heads,
|
|
dropout=config.attention_dropout,
|
|
name="encoder_attn",
|
|
is_decoder=True,
|
|
)
|
|
self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
|
|
self.fc1 = tf.keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
|
|
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
|
|
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
|
|
|
|
def call(
|
|
self,
|
|
hidden_states: tf.Tensor,
|
|
attention_mask: Optional[tf.Tensor] = None,
|
|
encoder_hidden_states: Optional[tf.Tensor] = None,
|
|
encoder_attention_mask: Optional[tf.Tensor] = None,
|
|
layer_head_mask: Optional[tf.Tensor] = None,
|
|
cross_attn_layer_head_mask: Optional[tf.Tensor] = None,
|
|
past_key_value: Optional[Tuple[tf.Tensor]] = None,
|
|
training: Optional[bool] = False,
|
|
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
|
|
"""
|
|
Args:
|
|
hidden_states (`tf.Tensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
|
|
attention_mask (`tf.Tensor`): attention mask of size
|
|
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
|
|
encoder_hidden_states (`tf.Tensor`):
|
|
cross attention input to the layer of shape *(seq_len, batch, embed_dim)*
|
|
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
|
|
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
|
|
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
|
|
*(decoder_attention_heads,)*
|
|
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
|
|
*(decoder_attention_heads,)*
|
|
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
|
|
"""
|
|
residual = hidden_states
|
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
|
|
# Self Attention
|
|
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
|
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
past_key_value=self_attn_past_key_value,
|
|
attention_mask=attention_mask,
|
|
layer_head_mask=layer_head_mask,
|
|
)
|
|
hidden_states = self.dropout(hidden_states, training=training)
|
|
hidden_states = residual + hidden_states
|
|
|
|
# Cross-Attention Block
|
|
cross_attn_present_key_value = None
|
|
cross_attn_weights = None
|
|
if encoder_hidden_states is not None:
|
|
residual = hidden_states
|
|
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
|
|
|
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
|
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
|
hidden_states=hidden_states,
|
|
key_value_states=encoder_hidden_states,
|
|
attention_mask=encoder_attention_mask,
|
|
layer_head_mask=cross_attn_layer_head_mask,
|
|
past_key_value=cross_attn_past_key_value,
|
|
)
|
|
hidden_states = self.dropout(hidden_states, training=training)
|
|
hidden_states = residual + hidden_states
|
|
|
|
# add cross-attn to positions 3,4 of present_key_value tuple
|
|
present_key_value = present_key_value + cross_attn_present_key_value
|
|
|
|
# Fully Connected
|
|
residual = hidden_states
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
|
hidden_states = self.activation_dropout(hidden_states, training=training)
|
|
hidden_states = self.fc2(hidden_states)
|
|
hidden_states = self.dropout(hidden_states, training=training)
|
|
hidden_states = residual + hidden_states
|
|
|
|
return (
|
|
hidden_states,
|
|
self_attn_weights,
|
|
cross_attn_weights,
|
|
present_key_value,
|
|
)
|
|
|
|
|
|
class TFBlenderbotPreTrainedModel(TFPreTrainedModel):
|
|
config_class = BlenderbotConfig
|
|
base_model_prefix = "model"
|
|
|
|
@property
|
|
def dummy_inputs(self):
|
|
pad_token = 1
|
|
input_ids = tf.cast(tf.convert_to_tensor(DUMMY_INPUTS), tf.int32)
|
|
decoder_input_ids = tf.cast(tf.convert_to_tensor(DUMMY_INPUTS), tf.int32)
|
|
dummy_inputs = {
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"attention_mask": tf.math.not_equal(input_ids, pad_token),
|
|
"input_ids": input_ids,
|
|
}
|
|
return dummy_inputs
|
|
|
|
@tf.function(
|
|
input_signature=[
|
|
{
|
|
"input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
|
|
"attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
|
|
"decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"),
|
|
"decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"),
|
|
}
|
|
]
|
|
)
|
|
# Copied from transformers.models.bart.modeling_tf_bart.TFBartPretrainedModel.serving
|
|
def serving(self, inputs):
|
|
output = self.call(inputs)
|
|
|
|
return self.serving_output(output)
|
|
|
|
|
|
BLENDERBOT_START_DOCSTRING = r"""
|
|
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
|
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
|
behavior.
|
|
|
|
<Tip>
|
|
|
|
TF 2.0 models accepts two formats as inputs:
|
|
|
|
- having all inputs as keyword arguments (like PyTorch models), or
|
|
- having all inputs as a list, tuple or dict in the first positional arguments.
|
|
|
|
This second option is useful when using [`tf.keras.Model.fit`] method which currently requires having all the
|
|
tensors in the first argument of the model call function: `model(inputs)`.
|
|
|
|
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the
|
|
first positional argument :
|
|
|
|
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
|
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
|
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
|
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
|
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
|
|
|
</Tip>
|
|
|
|
Args:
|
|
config ([`BlenderbotConfig`]): Model configuration class with all the parameters of the model.
|
|
Initializing with a config file does not load the weights associated with the model, only the
|
|
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
BLENDERBOT_GENERATION_EXAMPLE = r"""
|
|
Conversation example::
|
|
|
|
>>> from transformers import BlenderbotTokenizer, TFBlenderbotForConditionalGeneration >>> mname =
|
|
'facebook/blenderbot-400M-distill' >>> model = TFBlenderbotForConditionalGeneration.from_pretrained(mname) >>>
|
|
tokenizer = BlenderbotTokenizer.from_pretrained(mname) >>> UTTERANCE = "My friends are cool but they eat too
|
|
many carbs." >>> print("Human: ", UTTERANCE) >>> inputs = tokenizer([UTTERANCE], return_tensors='tf') >>>
|
|
reply_ids = model.generate(**inputs) >>> print("Bot: ", tokenizer.batch_decode(reply_ids,
|
|
skip_special_tokens=True)[0])
|
|
|
|
>>> REPLY = "I'm not sure" >>> print("Human: ", REPLY) >>> NEXT_UTTERANCE = ( ... "My friends are cool but they
|
|
eat too many carbs.</s> <s>That's unfortunate. " ... "Are they trying to lose weight or are they just trying to
|
|
be healthier?</s> " ... "<s> I'm not sure." ... ) >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors='tf')
|
|
>>> next_reply_ids = model.generate(**inputs) >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids,
|
|
skip_special_tokens=True)[0])
|
|
"""
|
|
|
|
BLENDERBOT_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`tf.Tensor` of shape `({0})`):
|
|
Indices of input sequence tokens in the vocabulary.
|
|
|
|
Indices can be obtained using [`BlenderbotTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
|
Indices of decoder input sequence tokens in the vocabulary.
|
|
|
|
Indices can be obtained using [`BlenderbotTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
|
|
|
Blenderbot uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
|
|
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
|
`past_key_values`).
|
|
decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
|
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
|
|
decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
|
range `[0, config.max_position_embeddings - 1]`.
|
|
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
|
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
|
|
decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
|
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
|
|
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
|
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
|
|
encoder_outputs (`tf.FloatTensor`, *optional*):
|
|
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
|
of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
|
|
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
|
|
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`). Set to `False` during training, `True` during generation
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
|
config will be used instead.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
|
used instead.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
|
eager mode, in graph mode the value will always be set to True.
|
|
training (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to use the model in training mode (some modules like dropout modules have different
|
|
behaviors between training and evaluation).
|
|
"""
|
|
|
|
|
|
@keras_serializable
|
|
class TFBlenderbotEncoder(tf.keras.layers.Layer):
|
|
config_class = BlenderbotConfig
|
|
"""
|
|
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
|
[`TFBlenderbotEncoderLayer`].
|
|
|
|
Args:
|
|
config: BlenderbotConfig
|
|
"""
|
|
|
|
def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.config = config
|
|
self.dropout = tf.keras.layers.Dropout(config.dropout)
|
|
self.layerdrop = config.encoder_layerdrop
|
|
self.padding_idx = config.pad_token_id
|
|
self.max_source_positions = config.max_position_embeddings
|
|
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
|
|
|
|
self.embed_tokens = embed_tokens
|
|
self.embed_positions = TFBlenderbotLearnedPositionalEmbedding(
|
|
config.max_position_embeddings,
|
|
config.d_model,
|
|
name="embed_positions",
|
|
)
|
|
self.layers = [TFBlenderbotEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
|
|
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
|
|
|
|
def get_embed_tokens(self):
|
|
return self.embed_tokens
|
|
|
|
def set_embed_tokens(self, embed_tokens):
|
|
self.embed_tokens = embed_tokens
|
|
|
|
@unpack_inputs
|
|
def call(
|
|
self,
|
|
input_ids=None,
|
|
inputs_embeds=None,
|
|
attention_mask=None,
|
|
head_mask=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
training=False,
|
|
):
|
|
"""
|
|
Args:
|
|
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
|
provide it.
|
|
|
|
Indices can be obtained using [`BlenderbotTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional):
|
|
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
|
|
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
|
than the model's internal embedding lookup matrix.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
|
|
in the config will be used instead.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
|
for more detail. This argument can be used only in eager mode, in graph mode the value in the config
|
|
will be used instead.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
|
|
in eager mode, in graph mode the value will always be set to True.
|
|
training (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to use the model in training mode (some modules like dropout modules have different
|
|
behaviors between training and evaluation).
|
|
"""
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
input_shape = shape_list(input_ids)
|
|
elif inputs_embeds is not None:
|
|
input_shape = shape_list(inputs_embeds)[:-1]
|
|
else:
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
|
|
|
embed_pos = self.embed_positions(input_shape)
|
|
hidden_states = inputs_embeds + embed_pos
|
|
hidden_states = self.dropout(hidden_states, training=training)
|
|
|
|
# check attention mask and invert
|
|
if attention_mask is not None:
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
attention_mask = _expand_mask(attention_mask)
|
|
else:
|
|
attention_mask = None
|
|
|
|
encoder_states = () if output_hidden_states else None
|
|
all_attentions = () if output_attentions else None
|
|
|
|
# check if head_mask has a correct number of layers specified if desired
|
|
# The tf.debugging asserts are not compliant with XLA then they
|
|
# have to be disabled in other modes than eager.
|
|
if head_mask is not None and tf.executing_eagerly():
|
|
tf.debugging.assert_equal(
|
|
shape_list(head_mask)[0],
|
|
len(self.layers),
|
|
message=(
|
|
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
|
|
f" {shape_list(head_mask)[0]}."
|
|
),
|
|
)
|
|
|
|
# encoder layers
|
|
for idx, encoder_layer in enumerate(self.layers):
|
|
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
|
dropout_probability = random.uniform(0, 1)
|
|
if training and (dropout_probability < self.layerdrop): # skip the layer
|
|
continue
|
|
|
|
hidden_states, attn = encoder_layer(
|
|
hidden_states,
|
|
attention_mask,
|
|
head_mask[idx] if head_mask is not None else None,
|
|
)
|
|
|
|
if output_attentions:
|
|
all_attentions += (attn,)
|
|
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
|
return TFBaseModelOutput(
|
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
|
)
|
|
|
|
|
|
@keras_serializable
|
|
class TFBlenderbotDecoder(tf.keras.layers.Layer):
|
|
config_class = BlenderbotConfig
|
|
"""
|
|
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFBlenderbotDecoderLayer`]
|
|
|
|
Args:
|
|
config: BlenderbotConfig
|
|
embed_tokens: output embedding
|
|
"""
|
|
|
|
def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.config = config
|
|
self.padding_idx = config.pad_token_id
|
|
self.embed_tokens = embed_tokens
|
|
self.layerdrop = config.decoder_layerdrop
|
|
self.embed_positions = TFBlenderbotLearnedPositionalEmbedding(
|
|
config.max_position_embeddings,
|
|
config.d_model,
|
|
name="embed_positions",
|
|
)
|
|
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
|
|
self.layers = [TFBlenderbotDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
|
|
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
|
|
|
|
self.dropout = tf.keras.layers.Dropout(config.dropout)
|
|
|
|
def get_embed_tokens(self):
|
|
return self.embed_tokens
|
|
|
|
def set_embed_tokens(self, embed_tokens):
|
|
self.embed_tokens = embed_tokens
|
|
|
|
@unpack_inputs
|
|
def call(
|
|
self,
|
|
input_ids=None,
|
|
inputs_embeds=None,
|
|
attention_mask=None,
|
|
position_ids=None,
|
|
encoder_hidden_states=None,
|
|
encoder_attention_mask=None,
|
|
head_mask=None,
|
|
cross_attn_head_mask=None,
|
|
past_key_values=None,
|
|
use_cache=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
training=False,
|
|
):
|
|
r"""
|
|
Args:
|
|
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
|
provide it.
|
|
|
|
Indices can be obtained using [`BlenderbotTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
|
range `[0, config.max_position_embeddings - 1]`.
|
|
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
|
of the decoder.
|
|
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
|
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
|
selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
|
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
|
|
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
|
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
|
|
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
|
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
|
|
decoding.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
|
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
|
all ``decoder_input_ids``` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of
|
|
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
|
|
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
|
|
control over how to convert `input_ids` indices into associated vectors than the model's internal
|
|
embedding lookup matrix.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
|
|
in the config will be used instead.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
|
for more detail. This argument can be used only in eager mode, in graph mode the value in the config
|
|
will be used instead.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
|
|
in eager mode, in graph mode the value will always be set to True.
|
|
training (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to use the model in training mode (some modules like dropout modules have different
|
|
behaviors between training and evaluation).
|
|
"""
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
input_shape = shape_list(input_ids)
|
|
elif inputs_embeds is not None:
|
|
input_shape = shape_list(inputs_embeds)[:-1]
|
|
else:
|
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
|
|
|
past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
|
|
|
|
# embed positions
|
|
if position_ids is None:
|
|
positions = self.embed_positions(input_shape, past_key_values_length)
|
|
else:
|
|
positions = self.embed_positions(input_shape, position_ids=position_ids)
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
if input_shape[-1] > 1:
|
|
combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
|
|
else:
|
|
combined_attention_mask = _expand_mask(
|
|
tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1])
|
|
|
|
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
|
|
|
|
hidden_states = hidden_states + positions
|
|
hidden_states = self.dropout(hidden_states, training=training)
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None
|
|
present_key_values = () if use_cache else None
|
|
|
|
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
|
|
# The tf.debugging asserts are not compliant with XLA then they
|
|
# have to be disabled in other modes than eager.
|
|
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
|
|
if attn_mask is not None and tf.executing_eagerly():
|
|
tf.debugging.assert_equal(
|
|
shape_list(attn_mask)[0],
|
|
len(self.layers),
|
|
message=(
|
|
f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
|
|
f" {shape_list(attn_mask)[0]}."
|
|
),
|
|
)
|
|
for idx, decoder_layer in enumerate(self.layers):
|
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
dropout_probability = random.uniform(0, 1)
|
|
|
|
if training and (dropout_probability < self.layerdrop):
|
|
continue
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
|
|
|
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=combined_attention_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
layer_head_mask=head_mask[idx] if head_mask is not None else None,
|
|
cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
|
|
past_key_value=past_key_value,
|
|
)
|
|
|
|
if use_cache:
|
|
present_key_values += (present_key_value,)
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_self_attn,)
|
|
|
|
if encoder_hidden_states is not None:
|
|
all_cross_attns += (layer_cross_attn,)
|
|
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
|
|
else:
|
|
return TFBaseModelOutputWithPastAndCrossAttentions(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=present_key_values,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
cross_attentions=all_cross_attns,
|
|
)
|
|
|
|
|
|
@keras_serializable
|
|
class TFBlenderbotMainLayer(tf.keras.layers.Layer):
|
|
config_class = BlenderbotConfig
|
|
|
|
def __init__(self, config: BlenderbotConfig, **kwargs):
|
|
super().__init__(**kwargs)
|
|
|
|
self.config = config
|
|
self.shared = TFSharedEmbeddings(config.vocab_size, config.d_model, config.pad_token_id, name="model.shared")
|
|
|
|
with tf.compat.v1.variable_scope("model.shared") as shared_abs_scope_name:
|
|
pass
|
|
|
|
# Wraps layer to avoid problems with weight restoring and ensuring we're in the correct TF scope.
|
|
embed_tokens = TFWrappedEmbeddings(self.shared, abs_scope_name=shared_abs_scope_name)
|
|
embed_tokens.vocab_size = self.shared.vocab_size
|
|
embed_tokens.hidden_size = self.shared.hidden_size
|
|
|
|
self.encoder = TFBlenderbotEncoder(config, embed_tokens, name="encoder")
|
|
self.decoder = TFBlenderbotDecoder(config, embed_tokens, name="decoder")
|
|
|
|
def get_input_embeddings(self):
|
|
return self.shared
|
|
|
|
def set_input_embeddings(self, new_embeddings):
|
|
self.shared.weight = new_embeddings
|
|
self.shared.vocab_size = self.shared.weight.shape[0]
|
|
# retrieve correct absolute scope for embed token wrapper
|
|
with tf.compat.v1.variable_scope("model.shared") as shared_abs_scope_name:
|
|
pass
|
|
# Wraps layer to avoid problems with weight restoring and ensuring we're in the correct TF scope.
|
|
embed_tokens = TFWrappedEmbeddings(self.shared, abs_scope_name=shared_abs_scope_name)
|
|
self.encoder.set_embed_tokens(embed_tokens)
|
|
self.decoder.set_embed_tokens(embed_tokens)
|
|
|
|
@unpack_inputs
|
|
def call(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
decoder_input_ids=None,
|
|
decoder_attention_mask=None,
|
|
decoder_position_ids=None,
|
|
head_mask=None,
|
|
decoder_head_mask=None,
|
|
cross_attn_head_mask=None,
|
|
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
|
|
past_key_values=None,
|
|
inputs_embeds=None,
|
|
decoder_inputs_embeds=None,
|
|
use_cache=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
training=False,
|
|
**kwargs
|
|
):
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
|
|
if encoder_outputs is None:
|
|
encoder_outputs = self.encoder(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
training=training,
|
|
)
|
|
# If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
|
|
elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
|
|
encoder_outputs = TFBaseModelOutput(
|
|
last_hidden_state=encoder_outputs[0],
|
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
|
)
|
|
# If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
|
|
elif not return_dict and not isinstance(encoder_outputs, tuple):
|
|
encoder_outputs = encoder_outputs.to_tuple()
|
|
|
|
decoder_outputs = self.decoder(
|
|
decoder_input_ids,
|
|
attention_mask=decoder_attention_mask,
|
|
position_ids=decoder_position_ids,
|
|
encoder_hidden_states=encoder_outputs[0],
|
|
encoder_attention_mask=attention_mask,
|
|
head_mask=decoder_head_mask,
|
|
cross_attn_head_mask=cross_attn_head_mask,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=decoder_inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
training=training,
|
|
)
|
|
|
|
if not return_dict:
|
|
return decoder_outputs + encoder_outputs
|
|
|
|
return TFSeq2SeqModelOutput(
|
|
last_hidden_state=decoder_outputs.last_hidden_state,
|
|
past_key_values=decoder_outputs.past_key_values,
|
|
decoder_hidden_states=decoder_outputs.hidden_states,
|
|
decoder_attentions=decoder_outputs.attentions,
|
|
cross_attentions=decoder_outputs.cross_attentions,
|
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
|
encoder_hidden_states=encoder_outputs.hidden_states,
|
|
encoder_attentions=encoder_outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare BLENDERBOT Model outputting raw hidden-states without any specific head on top.",
|
|
BLENDERBOT_START_DOCSTRING,
|
|
)
|
|
class TFBlenderbotModel(TFBlenderbotPreTrainedModel):
|
|
def __init__(self, config: BlenderbotConfig, *inputs, **kwargs):
|
|
super().__init__(config, *inputs, **kwargs)
|
|
|
|
self.model = TFBlenderbotMainLayer(config, name="model")
|
|
|
|
def get_encoder(self):
|
|
return self.model.encoder
|
|
|
|
def get_decoder(self):
|
|
return self.model.decoder
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
|
|
if pretrained_model_name_or_path == "facebook/blenderbot-90M":
|
|
from ..blenderbot_small import TFBlenderbotSmallModel
|
|
|
|
warnings.warn(
|
|
"The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
|
|
" checkpoint `facebook/small_blenderbot-90M` with"
|
|
" `TFBlenderbotSmallForConditionalGeneration.from_pretrained('facebook/small_blenderbot-90M')`"
|
|
" instead.",
|
|
FutureWarning,
|
|
)
|
|
return TFBlenderbotSmallModel.from_pretrained(pretrained_model_name_or_path)
|
|
|
|
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
|
|
@unpack_inputs
|
|
@add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
processor_class=_TOKENIZER_FOR_DOC,
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=TFSeq2SeqModelOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def call(
|
|
self,
|
|
input_ids: Optional[tf.Tensor] = None,
|
|
attention_mask: Optional[tf.Tensor] = None,
|
|
decoder_input_ids: Optional[tf.Tensor] = None,
|
|
decoder_attention_mask: Optional[tf.Tensor] = None,
|
|
decoder_position_ids: Optional[tf.Tensor] = None,
|
|
head_mask: Optional[tf.Tensor] = None,
|
|
decoder_head_mask: Optional[tf.Tensor] = None,
|
|
cross_attn_head_mask: Optional[tf.Tensor] = None,
|
|
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
|
|
past_key_values: Optional[List[tf.Tensor]] = None,
|
|
inputs_embeds: Optional[tf.Tensor] = None,
|
|
decoder_inputs_embeds: Optional[tf.Tensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
training: Optional[bool] = False,
|
|
**kwargs
|
|
) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]:
|
|
outputs = self.model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
decoder_position_ids=decoder_position_ids,
|
|
head_mask=head_mask,
|
|
decoder_head_mask=decoder_head_mask,
|
|
cross_attn_head_mask=cross_attn_head_mask,
|
|
encoder_outputs=encoder_outputs,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
decoder_inputs_embeds=decoder_inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
training=training,
|
|
)
|
|
|
|
return outputs
|
|
|
|
# Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output
|
|
def serving_output(self, output):
|
|
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
|
|
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
|
|
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
|
|
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
|
|
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
|
|
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
|
|
|
|
return TFSeq2SeqModelOutput(
|
|
last_hidden_state=output.last_hidden_state,
|
|
past_key_values=pkv,
|
|
decoder_hidden_states=dec_hs,
|
|
decoder_attentions=dec_attns,
|
|
cross_attentions=cross_attns,
|
|
encoder_last_hidden_state=output.encoder_last_hidden_state,
|
|
encoder_hidden_states=enc_hs,
|
|
encoder_attentions=enc_attns,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The BLENDERBOT Model with a language modeling head. Can be used for summarization.",
|
|
BLENDERBOT_START_DOCSTRING,
|
|
)
|
|
class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausalLanguageModelingLoss):
|
|
_keys_to_ignore_on_load_unexpected = [
|
|
r"model.encoder.embed_tokens.weight",
|
|
r"model.decoder.embed_tokens.weight",
|
|
]
|
|
|
|
def __init__(self, config, *inputs, **kwargs):
|
|
super().__init__(config, *inputs, **kwargs)
|
|
self.model = TFBlenderbotMainLayer(config, name="model")
|
|
self.use_cache = config.use_cache
|
|
# final_bias_logits is registered as a buffer in pytorch, so not trainable for the the sake of consistency.
|
|
self.final_logits_bias = self.add_weight(
|
|
name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
|
|
)
|
|
|
|
def get_decoder(self):
|
|
return self.model.decoder
|
|
|
|
def get_encoder(self):
|
|
return self.model.encoder
|
|
|
|
def get_output_embeddings(self):
|
|
return self.get_input_embeddings()
|
|
|
|
def set_output_embeddings(self, value):
|
|
self.set_input_embeddings(value)
|
|
|
|
def get_bias(self):
|
|
return {"final_logits_bias": self.final_logits_bias}
|
|
|
|
def set_bias(self, value):
|
|
self.final_logits_bias = value["final_logits_bias"]
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
|
|
if pretrained_model_name_or_path == "facebook/blenderbot-90M":
|
|
from ..blenderbot_small import TFBlenderbotSmallForConditionalGeneration
|
|
|
|
warnings.warn(
|
|
"The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
|
|
" checkpoint `facebook/small_blenderbot-90M` with"
|
|
" `TFBlenderbotSmallForConditionalGeneration.from_pretrained('facebook/small_blenderbot-90M')`"
|
|
" instead.",
|
|
FutureWarning,
|
|
)
|
|
return TFBlenderbotSmallForConditionalGeneration.from_pretrained(pretrained_model_name_or_path)
|
|
|
|
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
|
|
|
@unpack_inputs
|
|
@add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
|
@add_end_docstrings(BLENDERBOT_GENERATION_EXAMPLE)
|
|
def call(
|
|
self,
|
|
input_ids: Optional[tf.Tensor] = None,
|
|
attention_mask: Optional[tf.Tensor] = None,
|
|
decoder_input_ids: Optional[tf.Tensor] = None,
|
|
decoder_attention_mask: Optional[tf.Tensor] = None,
|
|
decoder_position_ids: Optional[tf.Tensor] = None,
|
|
head_mask: Optional[tf.Tensor] = None,
|
|
decoder_head_mask: Optional[tf.Tensor] = None,
|
|
cross_attn_head_mask: Optional[tf.Tensor] = None,
|
|
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
|
|
past_key_values: Optional[List[tf.Tensor]] = None,
|
|
inputs_embeds: Optional[tf.Tensor] = None,
|
|
decoder_inputs_embeds: Optional[tf.Tensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
labels: Optional[tf.Tensor] = None,
|
|
training: Optional[bool] = False,
|
|
) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]:
|
|
r"""
|
|
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
"""
|
|
if labels is not None:
|
|
labels = tf.where(
|
|
labels == self.config.pad_token_id,
|
|
tf.cast(tf.fill(shape_list(labels), -100), labels.dtype),
|
|
labels,
|
|
)
|
|
use_cache = False
|
|
if decoder_input_ids is None:
|
|
decoder_input_ids = shift_tokens_right(
|
|
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
|
)
|
|
|
|
outputs = self.model(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_input_ids=decoder_input_ids,
|
|
encoder_outputs=encoder_outputs,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
decoder_position_ids=decoder_position_ids,
|
|
head_mask=head_mask,
|
|
decoder_head_mask=decoder_head_mask,
|
|
cross_attn_head_mask=cross_attn_head_mask,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
decoder_inputs_embeds=decoder_inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
training=training,
|
|
)
|
|
lm_logits = self.model.shared(outputs[0], mode="linear")
|
|
lm_logits = lm_logits + self.final_logits_bias
|
|
masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
|
|
|
|
if not return_dict:
|
|
output = (lm_logits,) + outputs[1:]
|
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
|
return TFSeq2SeqLMOutput(
|
|
loss=masked_lm_loss,
|
|
logits=lm_logits,
|
|
past_key_values=outputs.past_key_values, # index 1 of d outputs
|
|
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
|
|
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
|
|
cross_attentions=outputs.cross_attentions, # index 4 of d outputs
|
|
encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
|
|
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
|
|
encoder_attentions=outputs.encoder_attentions, # 2 of e out
|
|
)
|
|
|
|
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output
|
|
def serving_output(self, output):
|
|
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
|
|
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
|
|
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
|
|
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
|
|
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
|
|
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
|
|
|
|
return TFSeq2SeqLMOutput(
|
|
logits=output.logits,
|
|
past_key_values=pkv,
|
|
decoder_hidden_states=dec_hs,
|
|
decoder_attentions=dec_attns,
|
|
cross_attentions=cross_attns,
|
|
encoder_last_hidden_state=output.encoder_last_hidden_state,
|
|
encoder_hidden_states=enc_hs,
|
|
encoder_attentions=enc_attns,
|
|
)
|
|
|
|
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation
|
|
def prepare_inputs_for_generation(
|
|
self,
|
|
decoder_input_ids,
|
|
past=None,
|
|
attention_mask=None,
|
|
decoder_attention_mask=None,
|
|
head_mask=None,
|
|
decoder_head_mask=None,
|
|
cross_attn_head_mask=None,
|
|
use_cache=None,
|
|
encoder_outputs=None,
|
|
**kwargs
|
|
):
|
|
|
|
# cut decoder_input_ids if past is used
|
|
if past is not None:
|
|
decoder_input_ids = decoder_input_ids[:, -1:]
|
|
|
|
if decoder_attention_mask is not None: # xla
|
|
decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
|
|
elif past is not None: # no xla + past
|
|
decoder_position_ids = past[0][0].shape[2]
|
|
else: # no xla + no past
|
|
decoder_position_ids = tf.range(decoder_input_ids.shape[1])
|
|
|
|
return {
|
|
"input_ids": None, # encoder_outputs is defined. input_ids not needed
|
|
"encoder_outputs": encoder_outputs,
|
|
"past_key_values": past,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"attention_mask": attention_mask,
|
|
"decoder_attention_mask": decoder_attention_mask,
|
|
"decoder_position_ids": decoder_position_ids,
|
|
"head_mask": head_mask,
|
|
"decoder_head_mask": decoder_head_mask,
|
|
"cross_attn_head_mask": cross_attn_head_mask,
|
|
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
|
|
}
|
|
|
|
@staticmethod
|
|
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration._reorder_cache
|
|
def _reorder_cache(past, beam_idx):
|
|
reordered_past = ()
|
|
for layer_past in past:
|
|
# cached cross_attention states don't have to be reordered -> they are always the same
|
|
reordered_past += (
|
|
tuple(tf.gather(past_state, beam_idx, axis=0) for past_state in layer_past[:2]) + layer_past[2:],
|
|
)
|
|
return reordered_past
|