mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* bug fix * update with more cases * more entries * Fix --------- Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
385 lines
19 KiB
Python
385 lines
19 KiB
Python
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
from parameterized import parameterized
|
|
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...test_image_processing_common import (
|
|
ImageProcessingTestMixin,
|
|
prepare_image_inputs,
|
|
)
|
|
|
|
|
|
if is_torch_available():
|
|
import numpy as np
|
|
import torch
|
|
|
|
from transformers.models.superglue.modeling_superglue import KeypointMatchingOutput
|
|
|
|
if is_vision_available():
|
|
from transformers import SuperGlueImageProcessor
|
|
|
|
|
|
def random_array(size):
|
|
return np.random.randint(255, size=size)
|
|
|
|
|
|
def random_tensor(size):
|
|
return torch.rand(size)
|
|
|
|
|
|
class SuperGlueImageProcessingTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=6,
|
|
num_channels=3,
|
|
image_size=18,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
do_resize=True,
|
|
size=None,
|
|
do_grayscale=True,
|
|
):
|
|
size = size if size is not None else {"height": 480, "width": 640}
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
self.do_grayscale = do_grayscale
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
"do_grayscale": self.do_grayscale,
|
|
}
|
|
|
|
def expected_output_image_shape(self, images):
|
|
return 2, self.num_channels, self.size["height"], self.size["width"]
|
|
|
|
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False, pairs=True, batch_size=None):
|
|
batch_size = batch_size if batch_size is not None else self.batch_size
|
|
image_inputs = prepare_image_inputs(
|
|
batch_size=batch_size,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
if pairs:
|
|
image_inputs = [image_inputs[i : i + 2] for i in range(0, len(image_inputs), 2)]
|
|
return image_inputs
|
|
|
|
def prepare_keypoint_matching_output(self, pixel_values):
|
|
max_number_keypoints = 50
|
|
batch_size = len(pixel_values)
|
|
mask = torch.zeros((batch_size, 2, max_number_keypoints), dtype=torch.int)
|
|
keypoints = torch.zeros((batch_size, 2, max_number_keypoints, 2))
|
|
matches = torch.full((batch_size, 2, max_number_keypoints), -1, dtype=torch.int)
|
|
scores = torch.zeros((batch_size, 2, max_number_keypoints))
|
|
for i in range(batch_size):
|
|
random_number_keypoints0 = np.random.randint(10, max_number_keypoints)
|
|
random_number_keypoints1 = np.random.randint(10, max_number_keypoints)
|
|
random_number_matches = np.random.randint(5, min(random_number_keypoints0, random_number_keypoints1))
|
|
mask[i, 0, :random_number_keypoints0] = 1
|
|
mask[i, 1, :random_number_keypoints1] = 1
|
|
keypoints[i, 0, :random_number_keypoints0] = torch.rand((random_number_keypoints0, 2))
|
|
keypoints[i, 1, :random_number_keypoints1] = torch.rand((random_number_keypoints1, 2))
|
|
random_matches_indices0 = torch.randperm(random_number_keypoints1, dtype=torch.int)[:random_number_matches]
|
|
random_matches_indices1 = torch.randperm(random_number_keypoints0, dtype=torch.int)[:random_number_matches]
|
|
matches[i, 0, random_matches_indices1] = random_matches_indices0
|
|
matches[i, 1, random_matches_indices0] = random_matches_indices1
|
|
scores[i, 0, random_matches_indices1] = torch.rand((random_number_matches,))
|
|
scores[i, 1, random_matches_indices0] = torch.rand((random_number_matches,))
|
|
return KeypointMatchingOutput(mask=mask, keypoints=keypoints, matches=matches, matching_scores=scores)
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class SuperGlueImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = SuperGlueImageProcessor if is_vision_available() else None
|
|
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
self.image_processor_tester = SuperGlueImageProcessingTester(self)
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
def test_image_processing(self):
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processing, "do_resize"))
|
|
self.assertTrue(hasattr(image_processing, "size"))
|
|
self.assertTrue(hasattr(image_processing, "do_rescale"))
|
|
self.assertTrue(hasattr(image_processing, "rescale_factor"))
|
|
self.assertTrue(hasattr(image_processing, "do_grayscale"))
|
|
|
|
def test_image_processor_from_dict_with_kwargs(self):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
self.assertEqual(image_processor.size, {"height": 480, "width": 640})
|
|
|
|
image_processor = self.image_processing_class.from_dict(
|
|
self.image_processor_dict, size={"height": 42, "width": 42}
|
|
)
|
|
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
|
|
|
|
@unittest.skip(reason="SuperPointImageProcessor is always supposed to return a grayscaled image")
|
|
def test_call_numpy_4_channels(self):
|
|
pass
|
|
|
|
def test_number_and_format_of_images_in_input(self):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
|
|
# Cases where the number of images and the format of lists in the input is correct
|
|
image_input = self.image_processor_tester.prepare_image_inputs(pairs=False, batch_size=2)
|
|
image_processed = image_processor.preprocess(image_input, return_tensors="pt")
|
|
self.assertEqual((1, 2, 3, 480, 640), tuple(image_processed["pixel_values"].shape))
|
|
|
|
image_input = self.image_processor_tester.prepare_image_inputs(pairs=True, batch_size=2)
|
|
image_processed = image_processor.preprocess(image_input, return_tensors="pt")
|
|
self.assertEqual((1, 2, 3, 480, 640), tuple(image_processed["pixel_values"].shape))
|
|
|
|
image_input = self.image_processor_tester.prepare_image_inputs(pairs=True, batch_size=4)
|
|
image_processed = image_processor.preprocess(image_input, return_tensors="pt")
|
|
self.assertEqual((2, 2, 3, 480, 640), tuple(image_processed["pixel_values"].shape))
|
|
|
|
image_input = self.image_processor_tester.prepare_image_inputs(pairs=True, batch_size=6)
|
|
image_processed = image_processor.preprocess(image_input, return_tensors="pt")
|
|
self.assertEqual((3, 2, 3, 480, 640), tuple(image_processed["pixel_values"].shape))
|
|
|
|
# Cases where the number of images or the format of lists in the input is incorrect
|
|
## List of 4 images
|
|
image_input = self.image_processor_tester.prepare_image_inputs(pairs=False, batch_size=4)
|
|
with self.assertRaises(ValueError) as cm:
|
|
image_processor.preprocess(image_input, return_tensors="pt")
|
|
self.assertEqual(ValueError, cm.exception.__class__)
|
|
|
|
## List of 3 images
|
|
image_input = self.image_processor_tester.prepare_image_inputs(pairs=False, batch_size=3)
|
|
with self.assertRaises(ValueError) as cm:
|
|
image_processor.preprocess(image_input, return_tensors="pt")
|
|
self.assertEqual(ValueError, cm.exception.__class__)
|
|
|
|
## List of 2 pairs and 1 image
|
|
image_input = self.image_processor_tester.prepare_image_inputs(pairs=True, batch_size=3)
|
|
with self.assertRaises(ValueError) as cm:
|
|
image_processor.preprocess(image_input, return_tensors="pt")
|
|
self.assertEqual(ValueError, cm.exception.__class__)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
([random_array((3, 100, 200)), random_array((3, 100, 200))], (1, 2, 3, 480, 640)),
|
|
([[random_array((3, 100, 200)), random_array((3, 100, 200))]], (1, 2, 3, 480, 640)),
|
|
([random_tensor((3, 100, 200)), random_tensor((3, 100, 200))], (1, 2, 3, 480, 640)),
|
|
([random_tensor((3, 100, 200)), random_tensor((3, 100, 200))], (1, 2, 3, 480, 640)),
|
|
],
|
|
)
|
|
def test_valid_image_shape_in_input(self, image_input, output):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
image_processed = image_processor.preprocess(image_input, return_tensors="pt")
|
|
self.assertEqual(output, tuple(image_processed["pixel_values"].shape))
|
|
|
|
@parameterized.expand(
|
|
[
|
|
(random_array((3, 100, 200)),),
|
|
([random_array((3, 100, 200))],),
|
|
(random_array((1, 3, 100, 200)),),
|
|
([[random_array((3, 100, 200))]],),
|
|
([[random_array((3, 100, 200))], [random_array((3, 100, 200))]],),
|
|
([random_array((1, 3, 100, 200)), random_array((1, 3, 100, 200))],),
|
|
(random_array((1, 1, 3, 100, 200)),),
|
|
],
|
|
)
|
|
def test_invalid_image_shape_in_input(self, image_input):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
with self.assertRaises(ValueError) as cm:
|
|
image_processor.preprocess(image_input, return_tensors="pt")
|
|
self.assertEqual(ValueError, cm.exception.__class__)
|
|
|
|
def test_input_images_properly_paired(self):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs()
|
|
pre_processed_images = image_processor.preprocess(image_inputs, return_tensors="np")
|
|
self.assertEqual(len(pre_processed_images["pixel_values"].shape), 5)
|
|
self.assertEqual(pre_processed_images["pixel_values"].shape[1], 2)
|
|
|
|
def test_input_not_paired_images_raises_error(self):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(pairs=False)
|
|
with self.assertRaises(ValueError):
|
|
image_processor.preprocess(image_inputs[0])
|
|
|
|
def test_input_image_properly_converted_to_grayscale(self):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs()
|
|
pre_processed_images = image_processor.preprocess(image_inputs)
|
|
for image_pair in pre_processed_images["pixel_values"]:
|
|
for image in image_pair:
|
|
self.assertTrue(np.all(image[0, ...] == image[1, ...]) and np.all(image[1, ...] == image[2, ...]))
|
|
|
|
def test_call_numpy(self):
|
|
# Test overwritten because SuperGlueImageProcessor combines images by pair to feed it into SuperGlue
|
|
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random numpy tensors
|
|
image_pairs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
|
for image_pair in image_pairs:
|
|
self.assertEqual(len(image_pair), 2)
|
|
|
|
expected_batch_size = int(self.image_processor_tester.batch_size / 2)
|
|
|
|
# Test with 2 images
|
|
encoded_images = image_processing(image_pairs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_pairs[0])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Test with list of pairs
|
|
encoded_images = image_processing(image_pairs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_pairs)
|
|
self.assertEqual(tuple(encoded_images.shape), (expected_batch_size, *expected_output_image_shape))
|
|
|
|
# Test without paired images
|
|
image_pairs = self.image_processor_tester.prepare_image_inputs(
|
|
equal_resolution=False, numpify=True, pairs=False
|
|
)
|
|
with self.assertRaises(ValueError):
|
|
image_processing(image_pairs, return_tensors="pt").pixel_values
|
|
|
|
def test_call_pil(self):
|
|
# Test overwritten because SuperGlueImageProcessor combines images by pair to feed it into SuperGlue
|
|
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PIL images
|
|
image_pairs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
|
for image_pair in image_pairs:
|
|
self.assertEqual(len(image_pair), 2)
|
|
|
|
expected_batch_size = int(self.image_processor_tester.batch_size / 2)
|
|
|
|
# Test with 2 images
|
|
encoded_images = image_processing(image_pairs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_pairs[0])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Test with list of pairs
|
|
encoded_images = image_processing(image_pairs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_pairs)
|
|
self.assertEqual(tuple(encoded_images.shape), (expected_batch_size, *expected_output_image_shape))
|
|
|
|
# Test without paired images
|
|
image_pairs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, pairs=False)
|
|
with self.assertRaises(ValueError):
|
|
image_processing(image_pairs, return_tensors="pt").pixel_values
|
|
|
|
def test_call_pytorch(self):
|
|
# Test overwritten because SuperGlueImageProcessor combines images by pair to feed it into SuperGlue
|
|
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PyTorch tensors
|
|
image_pairs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
|
for image_pair in image_pairs:
|
|
self.assertEqual(len(image_pair), 2)
|
|
|
|
expected_batch_size = int(self.image_processor_tester.batch_size / 2)
|
|
|
|
# Test with 2 images
|
|
encoded_images = image_processing(image_pairs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_pairs[0])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Test with list of pairs
|
|
encoded_images = image_processing(image_pairs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_pairs)
|
|
self.assertEqual(tuple(encoded_images.shape), (expected_batch_size, *expected_output_image_shape))
|
|
|
|
# Test without paired images
|
|
image_pairs = self.image_processor_tester.prepare_image_inputs(
|
|
equal_resolution=False, torchify=True, pairs=False
|
|
)
|
|
with self.assertRaises(ValueError):
|
|
image_processing(image_pairs, return_tensors="pt").pixel_values
|
|
|
|
def test_image_processor_with_list_of_two_images(self):
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
|
|
image_pairs = self.image_processor_tester.prepare_image_inputs(
|
|
equal_resolution=False, numpify=True, batch_size=2, pairs=False
|
|
)
|
|
self.assertEqual(len(image_pairs), 2)
|
|
self.assertTrue(isinstance(image_pairs[0], np.ndarray))
|
|
self.assertTrue(isinstance(image_pairs[1], np.ndarray))
|
|
|
|
expected_batch_size = 1
|
|
encoded_images = image_processing(image_pairs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_pairs[0])
|
|
self.assertEqual(tuple(encoded_images.shape), (expected_batch_size, *expected_output_image_shape))
|
|
|
|
@require_torch
|
|
def test_post_processing_keypoint_matching(self):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs()
|
|
pre_processed_images = image_processor.preprocess(image_inputs, return_tensors="pt")
|
|
outputs = self.image_processor_tester.prepare_keypoint_matching_output(**pre_processed_images)
|
|
|
|
def check_post_processed_output(post_processed_output, image_pair_size):
|
|
for post_processed_output, (image_size0, image_size1) in zip(post_processed_output, image_pair_size):
|
|
self.assertTrue("keypoints0" in post_processed_output)
|
|
self.assertTrue("keypoints1" in post_processed_output)
|
|
self.assertTrue("matching_scores" in post_processed_output)
|
|
keypoints0 = post_processed_output["keypoints0"]
|
|
keypoints1 = post_processed_output["keypoints1"]
|
|
all_below_image_size0 = torch.all(keypoints0[:, 0] <= image_size0[1]) and torch.all(
|
|
keypoints0[:, 1] <= image_size0[0]
|
|
)
|
|
all_below_image_size1 = torch.all(keypoints1[:, 0] <= image_size1[1]) and torch.all(
|
|
keypoints1[:, 1] <= image_size1[0]
|
|
)
|
|
all_above_zero0 = torch.all(keypoints0[:, 0] >= 0) and torch.all(keypoints0[:, 1] >= 0)
|
|
all_above_zero1 = torch.all(keypoints0[:, 0] >= 0) and torch.all(keypoints0[:, 1] >= 0)
|
|
self.assertTrue(all_below_image_size0)
|
|
self.assertTrue(all_below_image_size1)
|
|
self.assertTrue(all_above_zero0)
|
|
self.assertTrue(all_above_zero1)
|
|
all_scores_different_from_minus_one = torch.all(post_processed_output["matching_scores"] != -1)
|
|
self.assertTrue(all_scores_different_from_minus_one)
|
|
|
|
tuple_image_sizes = [
|
|
((image_pair[0].size[0], image_pair[0].size[1]), (image_pair[1].size[0], image_pair[1].size[1]))
|
|
for image_pair in image_inputs
|
|
]
|
|
tuple_post_processed_outputs = image_processor.post_process_keypoint_matching(outputs, tuple_image_sizes)
|
|
|
|
check_post_processed_output(tuple_post_processed_outputs, tuple_image_sizes)
|
|
|
|
tensor_image_sizes = torch.tensor(
|
|
[(image_pair[0].size, image_pair[1].size) for image_pair in image_inputs]
|
|
).flip(2)
|
|
tensor_post_processed_outputs = image_processor.post_process_keypoint_matching(outputs, tensor_image_sizes)
|
|
|
|
check_post_processed_output(tensor_post_processed_outputs, tensor_image_sizes)
|