mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-08 23:30:08 +06:00

* Start rework resizing * Rework bias/decoder resizing * Full resizing rework * Full resizing rework * Start to update the models with the new approach * Finish to update the models * Update all the tests * Update the template * Fix tests * Fix tests * Test a new approach * Refactoring * Refactoring * Refactoring * New rework * Rework BART * Rework bert+blenderbot * Rework CTRL * Rework Distilbert * Rework DPR * Rework Electra * Rework Flaubert * Rework Funnel * Rework GPT2 * Rework Longformer * Rework Lxmert * Rework marian+mbart * Rework mobilebert * Rework mpnet * Rework openai * Rework pegasus * Rework Roberta * Rework T5 * Rework xlm+xlnet * Rework template * Fix TFT5EncoderOnly + DPRs * Restore previous methods * Fix Funnel * Fix CTRL and TransforXL * Apply style * Apply Sylvain's comments * Restore a test in DPR * Address the comments * Fix bug * Apply style * remove unused import * Fix test * Forgot a method * missing test * Trigger CI * naming update * Rebase * Trigger CI
214 lines
9.1 KiB
Python
214 lines
9.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import tempfile
|
|
import unittest
|
|
|
|
from tests.test_configuration_common import ConfigTester
|
|
from tests.test_modeling_tf_bart import TFBartModelTester
|
|
from tests.test_modeling_tf_common import TFModelTesterMixin
|
|
from transformers import AutoTokenizer, MBartConfig, is_tf_available
|
|
from transformers.file_utils import cached_property
|
|
from transformers.testing_utils import is_pt_tf_cross_test, require_sentencepiece, require_tf, require_tokenizers, slow
|
|
|
|
|
|
if is_tf_available():
|
|
|
|
import tensorflow as tf
|
|
|
|
from transformers import TFAutoModelForSeq2SeqLM, TFMBartForConditionalGeneration
|
|
|
|
|
|
class ModelTester(TFBartModelTester):
|
|
config_updates = dict(normalize_before=True, add_final_layer_norm=True)
|
|
config_cls = MBartConfig
|
|
|
|
|
|
@require_tf
|
|
class TFMBartModelTest(TFModelTesterMixin, unittest.TestCase):
|
|
all_model_classes = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
|
|
all_generative_model_classes = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
|
|
model_tester_cls = ModelTester
|
|
is_encoder_decoder = True
|
|
test_pruning = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = self.model_tester_cls(self)
|
|
self.config_tester = ConfigTester(self, config_class=MBartConfig)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_inputs_embeds(self):
|
|
# inputs_embeds not supported
|
|
pass
|
|
|
|
def test_compile_tf_model(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
|
|
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
|
metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")
|
|
|
|
model_class = self.all_generative_model_classes[0]
|
|
input_ids = {
|
|
"decoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"),
|
|
"input_ids": tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32"),
|
|
}
|
|
|
|
# Prepare our model
|
|
model = model_class(config)
|
|
model(self._prepare_for_class(inputs_dict, model_class)) # Model must be called before saving.
|
|
# Let's load it from the disk to be sure we can use pretrained weights
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model = model_class.from_pretrained(tmpdirname)
|
|
|
|
outputs_dict = model(input_ids)
|
|
hidden_states = outputs_dict[0]
|
|
|
|
# Add a dense layer on top to test integration with other keras modules
|
|
outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)
|
|
|
|
# Compile extended model
|
|
extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
|
|
extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
|
|
|
|
def test_model_common_attributes(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
|
|
|
|
if model_class in self.all_generative_model_classes:
|
|
x = model.get_output_embeddings()
|
|
assert isinstance(x, tf.keras.layers.Layer)
|
|
name = model.get_bias()
|
|
assert isinstance(name, dict)
|
|
for k, v in name.items():
|
|
assert isinstance(v, tf.Variable)
|
|
else:
|
|
x = model.get_output_embeddings()
|
|
assert x is None
|
|
name = model.get_bias()
|
|
assert name is None
|
|
|
|
def test_saved_model_creation(self):
|
|
# This test is too long (>30sec) and makes fail the CI
|
|
pass
|
|
|
|
def test_resize_token_embeddings(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
def _get_word_embedding_weight(model, embedding_layer):
|
|
if hasattr(embedding_layer, "weight"):
|
|
return embedding_layer.weight
|
|
else:
|
|
# Here we build the word embeddings weights if not exists.
|
|
# And then we retry to get the attribute once built.
|
|
model(model.dummy_inputs)
|
|
if hasattr(embedding_layer, "weight"):
|
|
return embedding_layer.weight
|
|
else:
|
|
return None
|
|
|
|
for model_class in self.all_model_classes:
|
|
for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
|
|
# build the embeddings
|
|
model = model_class(config=config)
|
|
old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
|
|
old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
|
|
old_final_logits_bias = model.get_bias()
|
|
|
|
# reshape the embeddings
|
|
model.resize_token_embeddings(size)
|
|
new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
|
|
new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
|
|
new_final_logits_bias = model.get_bias()
|
|
|
|
# check that the resized embeddings size matches the desired size.
|
|
assert_size = size if size is not None else config.vocab_size
|
|
|
|
self.assertEqual(new_input_embeddings.shape[0], assert_size)
|
|
|
|
# check that weights remain the same after resizing
|
|
models_equal = True
|
|
for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
|
|
if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
|
|
models_equal = False
|
|
self.assertTrue(models_equal)
|
|
|
|
if old_output_embeddings is not None and new_output_embeddings is not None:
|
|
self.assertEqual(new_output_embeddings.shape[0], assert_size)
|
|
|
|
models_equal = True
|
|
for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
|
|
if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
|
|
models_equal = False
|
|
self.assertTrue(models_equal)
|
|
|
|
if old_final_logits_bias is not None and new_final_logits_bias is not None:
|
|
old_final_logits_bias = old_final_logits_bias["final_logits_bias"]
|
|
new_final_logits_bias = new_final_logits_bias["final_logits_bias"]
|
|
self.assertEqual(new_final_logits_bias.shape[0], 1)
|
|
self.assertEqual(new_final_logits_bias.shape[1], assert_size)
|
|
|
|
models_equal = True
|
|
for old, new in zip(old_final_logits_bias.value(), new_final_logits_bias.value()):
|
|
for p1, p2 in zip(old, new):
|
|
if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
|
|
models_equal = False
|
|
self.assertTrue(models_equal)
|
|
|
|
|
|
@is_pt_tf_cross_test
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class TestMBartEnRO(unittest.TestCase):
|
|
src_text = [
|
|
" UN Chief Says There Is No Military Solution in Syria",
|
|
]
|
|
expected_text = [
|
|
"Şeful ONU declară că nu există o soluţie militară în Siria",
|
|
]
|
|
model_name = "facebook/mbart-large-en-ro"
|
|
|
|
@cached_property
|
|
def tokenizer(self):
|
|
return AutoTokenizer.from_pretrained(self.model_name)
|
|
|
|
@cached_property
|
|
def model(self):
|
|
model = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name, from_pt=True)
|
|
return model
|
|
|
|
def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
|
|
generated_words = self.translate_src_text(**tokenizer_kwargs)
|
|
self.assertListEqual(self.expected_text, generated_words)
|
|
|
|
def translate_src_text(self, **tokenizer_kwargs):
|
|
model_inputs = self.tokenizer.prepare_seq2seq_batch(
|
|
src_texts=self.src_text, **tokenizer_kwargs, return_tensors="tf"
|
|
)
|
|
generated_ids = self.model.generate(
|
|
model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2
|
|
)
|
|
generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
|
return generated_words
|
|
|
|
@slow
|
|
def test_batch_generation_en_ro(self):
|
|
self._assert_generated_batch_equal_expected()
|