mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-14 01:58:22 +06:00

* add more cases * fix method not found in unittest Signed-off-by: Lin, Fanli <fanli.lin@intel.com> * fix more cases * add more models * add all * no unittest.case * remove for oneformer * fix style --------- Signed-off-by: Lin, Fanli <fanli.lin@intel.com>
165 lines
7.1 KiB
Python
165 lines
7.1 KiB
Python
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...test_image_processing_common import (
|
|
ImageProcessingTestMixin,
|
|
prepare_image_inputs,
|
|
)
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers.models.superpoint.modeling_superpoint import SuperPointKeypointDescriptionOutput
|
|
|
|
if is_vision_available():
|
|
from transformers import SuperPointImageProcessor
|
|
|
|
|
|
class SuperPointImageProcessingTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
image_size=18,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
do_resize=True,
|
|
size=None,
|
|
):
|
|
size = size if size is not None else {"height": 480, "width": 640}
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
}
|
|
|
|
def expected_output_image_shape(self, images):
|
|
return self.num_channels, self.size["height"], self.size["width"]
|
|
|
|
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
|
return prepare_image_inputs(
|
|
batch_size=self.batch_size,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
|
|
def prepare_keypoint_detection_output(self, pixel_values):
|
|
max_number_keypoints = 50
|
|
batch_size = len(pixel_values)
|
|
mask = torch.zeros((batch_size, max_number_keypoints))
|
|
keypoints = torch.zeros((batch_size, max_number_keypoints, 2))
|
|
scores = torch.zeros((batch_size, max_number_keypoints))
|
|
descriptors = torch.zeros((batch_size, max_number_keypoints, 16))
|
|
for i in range(batch_size):
|
|
random_number_keypoints = np.random.randint(0, max_number_keypoints)
|
|
mask[i, :random_number_keypoints] = 1
|
|
keypoints[i, :random_number_keypoints] = torch.rand((random_number_keypoints, 2))
|
|
scores[i, :random_number_keypoints] = torch.rand((random_number_keypoints,))
|
|
descriptors[i, :random_number_keypoints] = torch.rand((random_number_keypoints, 16))
|
|
return SuperPointKeypointDescriptionOutput(
|
|
loss=None, keypoints=keypoints, scores=scores, descriptors=descriptors, mask=mask, hidden_states=None
|
|
)
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class SuperPointImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = SuperPointImageProcessor if is_vision_available() else None
|
|
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
self.image_processor_tester = SuperPointImageProcessingTester(self)
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
def test_image_processing(self):
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processing, "do_resize"))
|
|
self.assertTrue(hasattr(image_processing, "size"))
|
|
self.assertTrue(hasattr(image_processing, "do_rescale"))
|
|
self.assertTrue(hasattr(image_processing, "rescale_factor"))
|
|
|
|
def test_image_processor_from_dict_with_kwargs(self):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
self.assertEqual(image_processor.size, {"height": 480, "width": 640})
|
|
|
|
image_processor = self.image_processing_class.from_dict(
|
|
self.image_processor_dict, size={"height": 42, "width": 42}
|
|
)
|
|
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
|
|
|
|
@unittest.skip(reason="SuperPointImageProcessor is always supposed to return a grayscaled image")
|
|
def test_call_numpy_4_channels(self):
|
|
pass
|
|
|
|
def test_input_image_properly_converted_to_grayscale(self):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs()
|
|
pre_processed_images = image_processor.preprocess(image_inputs)
|
|
for image in pre_processed_images["pixel_values"]:
|
|
self.assertTrue(np.all(image[0, ...] == image[1, ...]) and np.all(image[1, ...] == image[2, ...]))
|
|
|
|
@require_torch
|
|
def test_post_processing_keypoint_detection(self):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs()
|
|
pre_processed_images = image_processor.preprocess(image_inputs, return_tensors="pt")
|
|
outputs = self.image_processor_tester.prepare_keypoint_detection_output(**pre_processed_images)
|
|
|
|
def check_post_processed_output(post_processed_output, image_size):
|
|
for post_processed_output, image_size in zip(post_processed_output, image_size):
|
|
self.assertTrue("keypoints" in post_processed_output)
|
|
self.assertTrue("descriptors" in post_processed_output)
|
|
self.assertTrue("scores" in post_processed_output)
|
|
keypoints = post_processed_output["keypoints"]
|
|
all_below_image_size = torch.all(keypoints[:, 0] <= image_size[1]) and torch.all(
|
|
keypoints[:, 1] <= image_size[0]
|
|
)
|
|
all_above_zero = torch.all(keypoints[:, 0] >= 0) and torch.all(keypoints[:, 1] >= 0)
|
|
self.assertTrue(all_below_image_size)
|
|
self.assertTrue(all_above_zero)
|
|
|
|
tuple_image_sizes = [(image.size[0], image.size[1]) for image in image_inputs]
|
|
tuple_post_processed_outputs = image_processor.post_process_keypoint_detection(outputs, tuple_image_sizes)
|
|
|
|
check_post_processed_output(tuple_post_processed_outputs, tuple_image_sizes)
|
|
|
|
tensor_image_sizes = torch.tensor([image.size for image in image_inputs]).flip(1)
|
|
tensor_post_processed_outputs = image_processor.post_process_keypoint_detection(outputs, tensor_image_sizes)
|
|
|
|
check_post_processed_output(tensor_post_processed_outputs, tensor_image_sizes)
|