transformers/tests/models/chameleon/test_processor_chameleon.py
Franz Louis Cesista 0a21381ba3
Uniformize kwargs for chameleon processor (#32181)
* uniformize kwargs of Chameleon

* fix linter nit

* rm stride default

* add tests for chameleon processor

* fix tests

* add comment on get_component

* rm Chameleon's slow tokenizer

* add check order images text + nit

* update docs and tests

* Fix LlamaTokenizer tests

* fix gated repo access

* fix wrong import

---------

Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
2024-09-26 10:18:07 -04:00

45 lines
1.6 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch chameleon model."""
import tempfile
import unittest
from transformers import ChameleonProcessor, LlamaTokenizer
from transformers.testing_utils import get_tests_dir
from transformers.utils import is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_vision_available():
from transformers import ChameleonImageProcessor
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
class ChameleonProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = ChameleonProcessor
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
image_processor = ChameleonImageProcessor()
tokenizer = LlamaTokenizer(vocab_file=SAMPLE_VOCAB)
tokenizer.pad_token_id = 0
tokenizer.sep_token_id = 1
processor = self.processor_class(image_processor=image_processor, tokenizer=tokenizer)
processor.save_pretrained(self.tmpdirname)