transformers/docker/transformers-quantization-latest-gpu/Dockerfile
Andrei Panferov 64c05eecd6
HIGGS Quantization Support (#34997)
* higgs init

* working with crunches

* per-model workspaces

* style

* style 2

* tests and style

* higgs tests passing

* protecting torch import

* removed torch.Tensor type annotations

* torch.nn.Module inheritance fix maybe

* hide inputs inside quantizer calls

* style structure something

* Update src/transformers/quantizers/quantizer_higgs.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* reworked num_sms

* Update src/transformers/integrations/higgs.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* revamped device checks

* docstring upd

* Update src/transformers/quantizers/quantizer_higgs.py

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* edited tests and device map assertions

* minor edits

* updated flute cuda version in docker

* Added p=1 and 2,3bit HIGGS

* flute version check update

* incorporated `modules_to_not_convert`

* less hardcoding

* Fixed comment

* Added docs

* Fixed gemma support

* example in docs

* fixed torch_dtype for HIGGS

* Update docs/source/en/quantization/higgs.md

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Collection link

* dequantize interface

* newer flute version, torch.compile support

* unittest message fix

* docs update compile

* isort

* ValueError instead of assert

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2024-12-23 16:54:49 +01:00

79 lines
3.4 KiB
Docker
Executable File

FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu22.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands)
SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.5.1'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu118'
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile
RUN echo torch=$VERSION
# `torchvision` and `torchaudio` should be installed along with `torch`, especially for nightly build.
# Currently, let's just use their latest releases (when `torch` is installed with a release version)
RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch]
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
# needed in bnb and awq
RUN python3 -m pip install --no-cache-dir einops
# Add bitsandbytes for mixed int8 testing
RUN python3 -m pip install --no-cache-dir bitsandbytes
# Add auto-gptq for gtpq quantization testing, installed from source for pytorch==2.5.1 compatibility
# TORCH_CUDA_ARCH_LIST="7.5+PTX" is added to make the package compile for Tesla T4 gpus available for the CI.
RUN pip install gekko
RUN git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ && TORCH_CUDA_ARCH_LIST="7.5+PTX" python3 setup.py install
# Add optimum for gptq quantization testing
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
# Add PEFT
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/peft@main#egg=peft
# Add aqlm for quantization testing
RUN python3 -m pip install --no-cache-dir aqlm[gpu]==1.0.2
# Add vptq for quantization testing
RUN python3 -m pip install --no-cache-dir vptq
# Add hqq for quantization testing
RUN python3 -m pip install --no-cache-dir hqq
# For GGUF tests
RUN python3 -m pip install --no-cache-dir gguf
# Add autoawq for quantization testing
# >=v0.2.7 needed for compatibility with transformers > 4.46
RUN python3 -m pip install --no-cache-dir https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.7.post2/autoawq-0.2.7.post2-py3-none-any.whl
# Add quanto for quantization testing
RUN python3 -m pip install --no-cache-dir optimum-quanto
# Add eetq for quantization testing
RUN python3 -m pip install git+https://github.com/NetEase-FuXi/EETQ.git
# Add flute-kernel and fast_hadamard_transform for quantization testing
RUN python3 -m pip install --no-cache-dir flute-kernel==0.3.0 -i https://flute-ai.github.io/whl/cu118
RUN python3 -m pip install --no-cache-dir fast_hadamard_transform==1.0.4.post1
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop