mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* Use the CI to identify failing tests * Remove from all examples and tests * More default switch * Fixes * More test fixes * More fixes * Last fixes hopefully * Use the CI to identify failing tests * Remove from all examples and tests * More default switch * Fixes * More test fixes * More fixes * Last fixes hopefully * Run on the real suite * Fix slow tests
43 lines
1.7 KiB
Python
43 lines
1.7 KiB
Python
import unittest
|
|
|
|
from numpy import ndarray
|
|
|
|
from transformers import TensorType, is_flax_available, is_torch_available
|
|
from transformers.testing_utils import require_flax, require_torch
|
|
from transformers.tokenization_roberta_fast import RobertaTokenizerFast
|
|
|
|
|
|
if is_flax_available():
|
|
from transformers.modeling_flax_roberta import FlaxRobertaModel
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers.modeling_roberta import RobertaModel
|
|
|
|
|
|
@require_flax
|
|
@require_torch
|
|
class FlaxRobertaModelTest(unittest.TestCase):
|
|
def test_from_pytorch(self):
|
|
with torch.no_grad():
|
|
with self.subTest("roberta-base"):
|
|
tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
|
|
fx_model = FlaxRobertaModel.from_pretrained("roberta-base")
|
|
pt_model = RobertaModel.from_pretrained("roberta-base")
|
|
|
|
# Check for simple input
|
|
pt_inputs = tokenizer.encode_plus("This is a simple input", return_tensors=TensorType.PYTORCH)
|
|
fx_inputs = tokenizer.encode_plus("This is a simple input", return_tensors=TensorType.JAX)
|
|
pt_outputs = pt_model(**pt_inputs)
|
|
fx_outputs = fx_model(**fx_inputs)
|
|
|
|
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
|
|
|
|
for fx_output, pt_output in zip(fx_outputs, pt_outputs.to_tuple()):
|
|
self.assert_almost_equals(fx_output, pt_output.numpy(), 5e-4)
|
|
|
|
def assert_almost_equals(self, a: ndarray, b: ndarray, tol: float):
|
|
diff = (a - b).sum()
|
|
self.assertLessEqual(diff, tol, "Difference between torch and flax is {} (>= {})".format(diff, tol))
|