mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* Change the way tracing happens, enabling dynamic axes out of the box * Update the tests and modeling xlnet * Add the non recoding of leaf modules to avoid recording more values for the methods to record than what will be seen at tracing time (which would otherwise desynchronize the recorded values and the values that need to be given to the proxies during tracing, causing errors). * Comments and making tracing work for gpt-j and xlnet * Refactore things related to num_choices (and batch_size, sequence_length) * Update fx to work on PyTorch 1.10 * Postpone autowrap_function feature usage for later * Add copyrights * Remove unnecessary file * Fix issue with add_new_model_like * Apply suggestions
2176 lines
95 KiB
Python
Executable File
2176 lines
95 KiB
Python
Executable File
# coding=utf-8
|
|
# Copyright 2019 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import gc
|
|
import inspect
|
|
import json
|
|
import os
|
|
import os.path
|
|
import random
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
import warnings
|
|
from pathlib import Path
|
|
from typing import Dict, List, Tuple
|
|
|
|
import numpy as np
|
|
|
|
import transformers
|
|
from huggingface_hub import Repository, delete_repo, login
|
|
from requests.exceptions import HTTPError
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoModel,
|
|
AutoModelForSequenceClassification,
|
|
PretrainedConfig,
|
|
is_torch_available,
|
|
logging,
|
|
)
|
|
from transformers.file_utils import WEIGHTS_NAME, is_flax_available, is_torch_fx_available
|
|
from transformers.models.auto import get_values
|
|
from transformers.testing_utils import (
|
|
PASS,
|
|
USER,
|
|
CaptureLogger,
|
|
TestCasePlus,
|
|
is_pt_flax_cross_test,
|
|
is_pt_tf_cross_test,
|
|
is_staging_test,
|
|
require_torch,
|
|
require_torch_multi_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
sys.path.append(str(Path(__file__).parent.parent / "utils"))
|
|
|
|
from test_module.custom_configuration import CustomConfig # noqa E402
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
from test_module.custom_modeling import CustomModel
|
|
from transformers import (
|
|
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
|
|
MODEL_FOR_CAUSAL_LM_MAPPING,
|
|
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
|
|
MODEL_FOR_MASKED_LM_MAPPING,
|
|
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
|
|
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
|
|
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
|
|
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
|
|
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
|
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
|
|
MODEL_MAPPING,
|
|
AdaptiveEmbedding,
|
|
BertConfig,
|
|
BertModel,
|
|
PreTrainedModel,
|
|
T5Config,
|
|
T5ForConditionalGeneration,
|
|
)
|
|
|
|
if is_flax_available():
|
|
import jax.numpy as jnp
|
|
from transformers.modeling_flax_pytorch_utils import (
|
|
convert_pytorch_state_dict_to_flax,
|
|
load_flax_weights_in_pytorch_model,
|
|
)
|
|
|
|
if is_torch_fx_available():
|
|
from transformers.utils.fx import symbolic_trace
|
|
|
|
|
|
def _config_zero_init(config):
|
|
configs_no_init = copy.deepcopy(config)
|
|
for key in configs_no_init.__dict__.keys():
|
|
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
|
|
setattr(configs_no_init, key, 1e-10)
|
|
return configs_no_init
|
|
|
|
|
|
TINY_T5 = "patrickvonplaten/t5-tiny-random"
|
|
|
|
|
|
@require_torch
|
|
class ModelTesterMixin:
|
|
|
|
model_tester = None
|
|
all_model_classes = ()
|
|
all_generative_model_classes = ()
|
|
fx_compatible = False
|
|
test_torchscript = True
|
|
test_pruning = True
|
|
test_resize_embeddings = True
|
|
test_resize_position_embeddings = False
|
|
test_head_masking = True
|
|
test_mismatched_shapes = True
|
|
test_missing_keys = True
|
|
test_model_parallel = False
|
|
is_encoder_decoder = False
|
|
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
|
inputs_dict = copy.deepcopy(inputs_dict)
|
|
if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
|
|
inputs_dict = {
|
|
k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
|
|
if isinstance(v, torch.Tensor) and v.ndim > 1
|
|
else v
|
|
for k, v in inputs_dict.items()
|
|
}
|
|
|
|
if return_labels:
|
|
if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
|
|
inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
|
|
elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
|
|
inputs_dict["start_positions"] = torch.zeros(
|
|
self.model_tester.batch_size, dtype=torch.long, device=torch_device
|
|
)
|
|
inputs_dict["end_positions"] = torch.zeros(
|
|
self.model_tester.batch_size, dtype=torch.long, device=torch_device
|
|
)
|
|
elif model_class in [
|
|
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
|
|
*get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
|
|
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
|
|
]:
|
|
inputs_dict["labels"] = torch.zeros(
|
|
self.model_tester.batch_size, dtype=torch.long, device=torch_device
|
|
)
|
|
elif model_class in [
|
|
*get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
|
|
*get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
|
|
*get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING),
|
|
*get_values(MODEL_FOR_MASKED_LM_MAPPING),
|
|
*get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
|
|
]:
|
|
inputs_dict["labels"] = torch.zeros(
|
|
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
|
|
)
|
|
return inputs_dict
|
|
|
|
def test_save_load(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
out_2 = outputs[0].cpu().numpy()
|
|
out_2[np.isnan(out_2)] = 0
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model = model_class.from_pretrained(tmpdirname)
|
|
model.to(torch_device)
|
|
with torch.no_grad():
|
|
after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Make sure we don't have nans
|
|
out_1 = after_outputs[0].cpu().numpy()
|
|
out_1[np.isnan(out_1)] = 0
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
def test_save_load_keys_to_ignore_on_save(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
_keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
|
|
if _keys_to_ignore_on_save is None:
|
|
continue
|
|
|
|
# check the keys are in the original state_dict
|
|
for k in _keys_to_ignore_on_save:
|
|
self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
|
|
|
|
# check that certain keys didn't get saved with the model
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
|
|
state_dict_saved = torch.load(output_model_file)
|
|
for k in _keys_to_ignore_on_save:
|
|
self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
|
|
|
|
# Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
|
|
load_result = model.load_state_dict(state_dict_saved, strict=False)
|
|
self.assertTrue(
|
|
len(load_result.missing_keys) == 0
|
|
or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
|
|
)
|
|
self.assertTrue(len(load_result.unexpected_keys) == 0)
|
|
|
|
def test_gradient_checkpointing_backward_compatibility(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
if not model_class.supports_gradient_checkpointing:
|
|
continue
|
|
|
|
config.gradient_checkpointing = True
|
|
model = model_class(config)
|
|
self.assertTrue(model.is_gradient_checkpointing)
|
|
|
|
def test_gradient_checkpointing_enable_disable(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
if not model_class.supports_gradient_checkpointing:
|
|
continue
|
|
|
|
# at init model should have gradient checkpointing disabled
|
|
model = model_class(config)
|
|
self.assertFalse(model.is_gradient_checkpointing)
|
|
|
|
# check enable works
|
|
model.gradient_checkpointing_enable()
|
|
self.assertTrue(model.is_gradient_checkpointing)
|
|
|
|
# check disable works
|
|
model.gradient_checkpointing_disable()
|
|
self.assertFalse(model.is_gradient_checkpointing)
|
|
|
|
def _mock_init_weights(self, module):
|
|
if hasattr(module, "weight") and module.weight is not None:
|
|
module.weight.data.fill_(3)
|
|
if hasattr(module, "bias") and module.bias is not None:
|
|
module.bias.data.fill_(3)
|
|
|
|
def test_save_load_fast_init_from_base(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
base_class = MODEL_MAPPING[config.__class__]
|
|
|
|
if isinstance(base_class, tuple):
|
|
base_class = base_class[0]
|
|
|
|
for model_class in self.all_model_classes:
|
|
if model_class == base_class:
|
|
continue
|
|
|
|
# make a copy of model class to not break future tests
|
|
# from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
|
|
class CopyClass(model_class):
|
|
pass
|
|
|
|
model_class_copy = CopyClass
|
|
|
|
# make sure that all keys are expected for test
|
|
model_class_copy._keys_to_ignore_on_load_missing = []
|
|
|
|
# make init deterministic, but make sure that
|
|
# non-initialized weights throw errors nevertheless
|
|
model_class_copy._init_weights = self._mock_init_weights
|
|
|
|
model = base_class(config)
|
|
state_dict = model.state_dict()
|
|
|
|
# this will often delete a single weight of a multi-weight module
|
|
# to test an edge case
|
|
random_key_to_del = random.choice(list(state_dict.keys()))
|
|
del state_dict[random_key_to_del]
|
|
|
|
# check that certain keys didn't get saved with the model
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))
|
|
|
|
model_fast_init = model_class_copy.from_pretrained(tmpdirname)
|
|
model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)
|
|
|
|
for key in model_fast_init.state_dict().keys():
|
|
max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
|
|
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
|
|
|
|
def test_save_load_fast_init_to_base(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
base_class = MODEL_MAPPING[config.__class__]
|
|
|
|
if isinstance(base_class, tuple):
|
|
base_class = base_class[0]
|
|
|
|
for model_class in self.all_model_classes:
|
|
|
|
if model_class == base_class:
|
|
continue
|
|
|
|
# make a copy of model class to not break future tests
|
|
# from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
|
|
class CopyClass(base_class):
|
|
pass
|
|
|
|
base_class_copy = CopyClass
|
|
|
|
# make sure that all keys are expected for test
|
|
base_class_copy._keys_to_ignore_on_load_missing = []
|
|
|
|
# make init deterministic, but make sure that
|
|
# non-initialized weights throw errors nevertheless
|
|
base_class_copy._init_weights = self._mock_init_weights
|
|
|
|
model = model_class(config)
|
|
state_dict = model.state_dict()
|
|
|
|
# this will often delete a single weight of a multi-weight module
|
|
# to test an edge case
|
|
random_key_to_del = random.choice(list(state_dict.keys()))
|
|
del state_dict[random_key_to_del]
|
|
|
|
# check that certain keys didn't get saved with the model
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.config.save_pretrained(tmpdirname)
|
|
torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))
|
|
|
|
model_fast_init = base_class_copy.from_pretrained(tmpdirname)
|
|
model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)
|
|
|
|
for key in model_fast_init.state_dict().keys():
|
|
max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
|
|
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
|
|
|
|
def test_initialization(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
if param.requires_grad:
|
|
self.assertIn(
|
|
((param.data.mean() * 1e9).round() / 1e9).item(),
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
def test_determinism(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
|
|
second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
|
|
|
|
out_1 = first.cpu().numpy()
|
|
out_2 = second.cpu().numpy()
|
|
out_1 = out_1[~np.isnan(out_1)]
|
|
out_2 = out_2[~np.isnan(out_2)]
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
if model.config.is_encoder_decoder:
|
|
expected_arg_names = [
|
|
"input_ids",
|
|
"attention_mask",
|
|
"decoder_input_ids",
|
|
"decoder_attention_mask",
|
|
]
|
|
expected_arg_names.extend(
|
|
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
|
|
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
|
|
else ["encoder_outputs"]
|
|
)
|
|
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
|
|
else:
|
|
expected_arg_names = ["input_ids"]
|
|
self.assertListEqual(arg_names[:1], expected_arg_names)
|
|
|
|
def test_training(self):
|
|
if not self.model_tester.is_training:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
if model_class in get_values(MODEL_MAPPING):
|
|
continue
|
|
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.train()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
loss = model(**inputs).loss
|
|
loss.backward()
|
|
|
|
def test_training_gradient_checkpointing(self):
|
|
if not self.model_tester.is_training:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.use_cache = False
|
|
config.return_dict = True
|
|
|
|
if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
|
|
continue
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.gradient_checkpointing_enable()
|
|
model.train()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
loss = model(**inputs).loss
|
|
loss.backward()
|
|
|
|
def test_attention_outputs(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
seq_len = getattr(self.model_tester, "seq_length", None)
|
|
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
|
|
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
|
|
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
|
|
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
|
|
chunk_length = getattr(self.model_tester, "chunk_length", None)
|
|
if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
|
|
encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = False
|
|
config.return_dict = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
|
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
|
|
|
# check that output_attentions also work using config
|
|
del inputs_dict["output_attentions"]
|
|
config.output_attentions = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
|
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
|
|
|
if chunk_length is not None:
|
|
self.assertListEqual(
|
|
list(attentions[0].shape[-4:]),
|
|
[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
|
|
)
|
|
else:
|
|
self.assertListEqual(
|
|
list(attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
|
|
)
|
|
out_len = len(outputs)
|
|
|
|
if self.is_encoder_decoder:
|
|
correct_outlen = 5
|
|
|
|
# loss is at first position
|
|
if "labels" in inputs_dict:
|
|
correct_outlen += 1 # loss is added to beginning
|
|
# Question Answering model returns start_logits and end_logits
|
|
if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
|
|
correct_outlen += 1 # start_logits and end_logits instead of only 1 output
|
|
if "past_key_values" in outputs:
|
|
correct_outlen += 1 # past_key_values have been returned
|
|
|
|
self.assertEqual(out_len, correct_outlen)
|
|
|
|
# decoder attentions
|
|
decoder_attentions = outputs.decoder_attentions
|
|
self.assertIsInstance(decoder_attentions, (list, tuple))
|
|
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
|
|
self.assertListEqual(
|
|
list(decoder_attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
|
|
)
|
|
|
|
# cross attentions
|
|
cross_attentions = outputs.cross_attentions
|
|
self.assertIsInstance(cross_attentions, (list, tuple))
|
|
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
|
|
self.assertListEqual(
|
|
list(cross_attentions[0].shape[-3:]),
|
|
[
|
|
self.model_tester.num_attention_heads,
|
|
decoder_seq_length,
|
|
encoder_key_length,
|
|
],
|
|
)
|
|
|
|
# Check attention is always last and order is fine
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
if hasattr(self.model_tester, "num_hidden_states_types"):
|
|
added_hidden_states = self.model_tester.num_hidden_states_types
|
|
elif self.is_encoder_decoder:
|
|
added_hidden_states = 2
|
|
else:
|
|
added_hidden_states = 1
|
|
self.assertEqual(out_len + added_hidden_states, len(outputs))
|
|
|
|
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
|
|
|
|
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
|
|
if chunk_length is not None:
|
|
self.assertListEqual(
|
|
list(self_attentions[0].shape[-4:]),
|
|
[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
|
|
)
|
|
else:
|
|
self.assertListEqual(
|
|
list(self_attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
|
|
)
|
|
|
|
@slow
|
|
def test_torchscript(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
self._create_and_check_torchscript(config, inputs_dict)
|
|
|
|
@slow
|
|
def test_torchscript_output_attentions(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.output_attentions = True
|
|
self._create_and_check_torchscript(config, inputs_dict)
|
|
|
|
@slow
|
|
def test_torchscript_output_hidden_state(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.output_hidden_states = True
|
|
self._create_and_check_torchscript(config, inputs_dict)
|
|
|
|
def _create_and_check_torchscript(self, config, inputs_dict):
|
|
if not self.test_torchscript:
|
|
return
|
|
|
|
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
|
|
configs_no_init.torchscript = True
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
try:
|
|
if model.config.is_encoder_decoder:
|
|
model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
|
|
input_ids = inputs["input_ids"]
|
|
attention_mask = inputs["attention_mask"]
|
|
decoder_input_ids = inputs["decoder_input_ids"]
|
|
decoder_attention_mask = inputs["decoder_attention_mask"]
|
|
traced_model = torch.jit.trace(
|
|
model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
|
|
)
|
|
else:
|
|
input_ids = inputs["input_ids"]
|
|
traced_model = torch.jit.trace(model, input_ids)
|
|
except RuntimeError:
|
|
self.fail("Couldn't trace module.")
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
|
|
|
|
try:
|
|
torch.jit.save(traced_model, pt_file_name)
|
|
except Exception:
|
|
self.fail("Couldn't save module.")
|
|
|
|
try:
|
|
loaded_model = torch.jit.load(pt_file_name)
|
|
except Exception:
|
|
self.fail("Couldn't load module.")
|
|
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
loaded_model.to(torch_device)
|
|
loaded_model.eval()
|
|
|
|
model_state_dict = model.state_dict()
|
|
loaded_model_state_dict = loaded_model.state_dict()
|
|
|
|
non_persistent_buffers = {}
|
|
for key in loaded_model_state_dict.keys():
|
|
if key not in model_state_dict.keys():
|
|
non_persistent_buffers[key] = loaded_model_state_dict[key]
|
|
|
|
loaded_model_state_dict = {
|
|
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
|
|
}
|
|
|
|
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
|
|
|
|
model_buffers = list(model.buffers())
|
|
for non_persistent_buffer in non_persistent_buffers.values():
|
|
found_buffer = False
|
|
for i, model_buffer in enumerate(model_buffers):
|
|
if torch.equal(non_persistent_buffer, model_buffer):
|
|
found_buffer = True
|
|
break
|
|
|
|
self.assertTrue(found_buffer)
|
|
model_buffers.pop(i)
|
|
|
|
models_equal = True
|
|
for layer_name, p1 in model_state_dict.items():
|
|
if layer_name in loaded_model_state_dict:
|
|
p2 = loaded_model_state_dict[layer_name]
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
|
|
self.assertTrue(models_equal)
|
|
|
|
def test_torch_fx(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
self._create_and_check_torch_fx_tracing(config, inputs_dict)
|
|
|
|
def test_torch_fx_output_loss(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)
|
|
|
|
def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
|
|
if not is_torch_fx_available() or not self.fx_compatible:
|
|
return
|
|
|
|
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
|
|
configs_no_init.return_dict = False
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)
|
|
|
|
try:
|
|
if model.config.is_encoder_decoder:
|
|
model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
|
|
labels = inputs.get("labels", None)
|
|
input_names = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask"]
|
|
if labels is not None:
|
|
input_names.append("labels")
|
|
filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
|
|
|
|
model_output = model(**filtered_inputs)
|
|
|
|
traced_model = symbolic_trace(model, input_names)
|
|
traced_output = traced_model(**filtered_inputs)
|
|
else:
|
|
input_names = ["input_ids", "attention_mask", "token_type_ids"]
|
|
input_ids = inputs["input_ids"]
|
|
|
|
labels = inputs.get("labels", None)
|
|
start_positions = inputs.get("start_positions", None)
|
|
end_positions = inputs.get("end_positions", None)
|
|
if labels is not None:
|
|
input_names.append("labels")
|
|
if start_positions is not None:
|
|
input_names.append("start_positions")
|
|
if end_positions is not None:
|
|
input_names.append("end_positions")
|
|
|
|
filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
|
|
input_names = filtered_inputs.keys()
|
|
|
|
model_output = model(**filtered_inputs)
|
|
|
|
rank = len(input_ids.shape)
|
|
if rank not in [2, 3]:
|
|
raise NotImplementedError(
|
|
f"symbolic_trace automatic parameters inference not implemented for input of rank {rank}."
|
|
)
|
|
|
|
traced_model = symbolic_trace(model, input_names)
|
|
traced_output = traced_model(**filtered_inputs)
|
|
|
|
except RuntimeError:
|
|
self.fail("Couldn't trace module.")
|
|
|
|
def flatten_output(output):
|
|
flatten = []
|
|
for x in output:
|
|
if isinstance(x, (tuple, list)):
|
|
flatten += flatten_output(x)
|
|
elif not isinstance(x, torch.Tensor):
|
|
continue
|
|
else:
|
|
flatten.append(x)
|
|
return flatten
|
|
|
|
model_output = flatten_output(model_output)
|
|
traced_output = flatten_output(traced_output)
|
|
num_outputs = len(model_output)
|
|
|
|
for i in range(num_outputs):
|
|
self.assertTrue(
|
|
torch.allclose(model_output[i], traced_output[i]),
|
|
f"traced {i}th output doesn't match model {i}th output for {model_class}",
|
|
)
|
|
|
|
def test_headmasking(self):
|
|
if not self.test_head_masking:
|
|
return
|
|
|
|
global_rng.seed(42)
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
global_rng.seed()
|
|
|
|
inputs_dict["output_attentions"] = True
|
|
config.output_hidden_states = True
|
|
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
# Prepare head_mask
|
|
# Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
|
|
head_mask = torch.ones(
|
|
self.model_tester.num_hidden_layers,
|
|
self.model_tester.num_attention_heads,
|
|
device=torch_device,
|
|
)
|
|
head_mask[0, 0] = 0
|
|
head_mask[-1, :-1] = 0
|
|
head_mask.requires_grad_(requires_grad=True)
|
|
inputs = self._prepare_for_class(inputs_dict, model_class).copy()
|
|
inputs["head_mask"] = head_mask
|
|
if model.config.is_encoder_decoder:
|
|
signature = inspect.signature(model.forward)
|
|
arg_names = [*signature.parameters.keys()]
|
|
if "decoder_head_mask" in arg_names: # necessary diferentiation because of T5 model
|
|
inputs["decoder_head_mask"] = head_mask
|
|
if "cross_attn_head_mask" in arg_names:
|
|
inputs["cross_attn_head_mask"] = head_mask
|
|
outputs = model(**inputs, return_dict=True)
|
|
|
|
# Test that we can get a gradient back for importance score computation
|
|
output = sum(t.sum() for t in outputs[0])
|
|
output = output.sum()
|
|
output.backward()
|
|
multihead_outputs = head_mask.grad
|
|
|
|
self.assertIsNotNone(multihead_outputs)
|
|
self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
|
|
|
|
def check_attentions_validity(attentions):
|
|
# Remove Nan
|
|
for t in attentions:
|
|
self.assertLess(
|
|
torch.sum(torch.isnan(t)), t.numel() / 4
|
|
) # Check we don't have more than 25% nans (arbitrary)
|
|
attentions = [
|
|
t.masked_fill(torch.isnan(t), 0.0) for t in attentions
|
|
] # remove them (the test is less complete)
|
|
|
|
self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
|
|
self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
|
|
if len(attentions) > 2: # encoder-decoder models have only 2 layers in each module
|
|
self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
|
|
self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
|
|
self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)
|
|
|
|
if model.config.is_encoder_decoder:
|
|
check_attentions_validity(outputs.encoder_attentions)
|
|
check_attentions_validity(outputs.decoder_attentions)
|
|
check_attentions_validity(outputs.cross_attentions)
|
|
else:
|
|
check_attentions_validity(outputs.attentions)
|
|
|
|
def test_head_pruning(self):
|
|
if not self.test_pruning:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
(
|
|
config,
|
|
inputs_dict,
|
|
) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
if "head_mask" in inputs_dict:
|
|
del inputs_dict["head_mask"]
|
|
|
|
inputs_dict["output_attentions"] = True
|
|
config.output_hidden_states = False
|
|
model = model_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
heads_to_prune = {
|
|
0: list(range(1, self.model_tester.num_attention_heads)),
|
|
-1: [0],
|
|
}
|
|
model.prune_heads(heads_to_prune)
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
attentions = outputs[-1]
|
|
|
|
self.assertEqual(attentions[0].shape[-3], 1)
|
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
|
|
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
|
|
|
|
def test_head_pruning_save_load_from_pretrained(self):
|
|
if not self.test_pruning:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
(
|
|
config,
|
|
inputs_dict,
|
|
) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
if "head_mask" in inputs_dict:
|
|
del inputs_dict["head_mask"]
|
|
|
|
inputs_dict["output_attentions"] = True
|
|
config.output_hidden_states = False
|
|
model = model_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
heads_to_prune = {
|
|
0: list(range(1, self.model_tester.num_attention_heads)),
|
|
-1: [0],
|
|
}
|
|
model.prune_heads(heads_to_prune)
|
|
|
|
with tempfile.TemporaryDirectory() as temp_dir_name:
|
|
model.save_pretrained(temp_dir_name)
|
|
model = model_class.from_pretrained(temp_dir_name)
|
|
model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs[-1]
|
|
self.assertEqual(attentions[0].shape[-3], 1)
|
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
|
|
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
|
|
|
|
def test_head_pruning_save_load_from_config_init(self):
|
|
if not self.test_pruning:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
(
|
|
config,
|
|
inputs_dict,
|
|
) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
if "head_mask" in inputs_dict:
|
|
del inputs_dict["head_mask"]
|
|
|
|
inputs_dict["output_attentions"] = True
|
|
config.output_hidden_states = False
|
|
|
|
heads_to_prune = {
|
|
0: list(range(1, self.model_tester.num_attention_heads)),
|
|
-1: [0],
|
|
}
|
|
config.pruned_heads = heads_to_prune
|
|
|
|
model = model_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs[-1]
|
|
|
|
self.assertEqual(attentions[0].shape[-3], 1)
|
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
|
|
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
|
|
|
|
def test_head_pruning_integration(self):
|
|
if not self.test_pruning:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
(
|
|
config,
|
|
inputs_dict,
|
|
) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
if "head_mask" in inputs_dict:
|
|
del inputs_dict["head_mask"]
|
|
|
|
inputs_dict["output_attentions"] = True
|
|
config.output_hidden_states = False
|
|
|
|
heads_to_prune = {0: [0], 1: [1, 2]}
|
|
config.pruned_heads = heads_to_prune
|
|
|
|
model = model_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs[-1]
|
|
|
|
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
|
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
|
|
self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
|
|
self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
|
|
|
|
with tempfile.TemporaryDirectory() as temp_dir_name:
|
|
model.save_pretrained(temp_dir_name)
|
|
model = model_class.from_pretrained(temp_dir_name)
|
|
model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs[-1]
|
|
|
|
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
|
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
|
|
self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
|
|
self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
|
|
|
|
heads_to_prune = {0: [0], 2: [1, 2]}
|
|
model.prune_heads(heads_to_prune)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs[-1]
|
|
|
|
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
|
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
|
|
self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
|
|
self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
|
|
|
|
self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
|
|
|
|
def test_hidden_states_output(self):
|
|
def check_hidden_states_output(inputs_dict, config, model_class):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
|
|
|
|
expected_num_layers = getattr(
|
|
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
|
|
)
|
|
self.assertEqual(len(hidden_states), expected_num_layers)
|
|
|
|
if hasattr(self.model_tester, "encoder_seq_length"):
|
|
seq_length = self.model_tester.encoder_seq_length
|
|
if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
|
|
seq_length = seq_length * self.model_tester.chunk_length
|
|
else:
|
|
seq_length = self.model_tester.seq_length
|
|
|
|
self.assertListEqual(
|
|
list(hidden_states[0].shape[-2:]),
|
|
[seq_length, self.model_tester.hidden_size],
|
|
)
|
|
|
|
if config.is_encoder_decoder:
|
|
hidden_states = outputs.decoder_hidden_states
|
|
|
|
self.assertIsInstance(hidden_states, (list, tuple))
|
|
self.assertEqual(len(hidden_states), expected_num_layers)
|
|
seq_len = getattr(self.model_tester, "seq_length", None)
|
|
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
|
|
|
|
self.assertListEqual(
|
|
list(hidden_states[0].shape[-2:]),
|
|
[decoder_seq_length, self.model_tester.hidden_size],
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_hidden_states"] = True
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_hidden_states = True
|
|
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.output_hidden_states = True
|
|
config.output_attentions = True
|
|
|
|
# no need to test all models as different heads yield the same functionality
|
|
model_class = self.all_model_classes[0]
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
outputs = model(**inputs)
|
|
|
|
output = outputs[0]
|
|
|
|
if config.is_encoder_decoder:
|
|
# Seq2Seq models
|
|
encoder_hidden_states = outputs.encoder_hidden_states[0]
|
|
encoder_attentions = outputs.encoder_attentions[0]
|
|
encoder_hidden_states.retain_grad()
|
|
encoder_attentions.retain_grad()
|
|
|
|
decoder_hidden_states = outputs.decoder_hidden_states[0]
|
|
decoder_attentions = outputs.decoder_attentions[0]
|
|
decoder_hidden_states.retain_grad()
|
|
decoder_attentions.retain_grad()
|
|
|
|
cross_attentions = outputs.cross_attentions[0]
|
|
cross_attentions.retain_grad()
|
|
|
|
output.flatten()[0].backward(retain_graph=True)
|
|
|
|
self.assertIsNotNone(encoder_hidden_states.grad)
|
|
self.assertIsNotNone(encoder_attentions.grad)
|
|
self.assertIsNotNone(decoder_hidden_states.grad)
|
|
self.assertIsNotNone(decoder_attentions.grad)
|
|
self.assertIsNotNone(cross_attentions.grad)
|
|
else:
|
|
# Encoder-/Decoder-only models
|
|
hidden_states = outputs.hidden_states[0]
|
|
attentions = outputs.attentions[0]
|
|
|
|
hidden_states.retain_grad()
|
|
attentions.retain_grad()
|
|
|
|
output.flatten()[0].backward(retain_graph=True)
|
|
|
|
self.assertIsNotNone(hidden_states.grad)
|
|
self.assertIsNotNone(attentions.grad)
|
|
|
|
def test_feed_forward_chunking(self):
|
|
(
|
|
original_config,
|
|
inputs_dict,
|
|
) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
torch.manual_seed(0)
|
|
config = copy.deepcopy(original_config)
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
|
|
|
|
torch.manual_seed(0)
|
|
config.chunk_size_feed_forward = 1
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
|
|
self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))
|
|
|
|
def test_resize_position_vector_embeddings(self):
|
|
if not self.test_resize_position_embeddings:
|
|
return
|
|
|
|
(
|
|
original_config,
|
|
inputs_dict,
|
|
) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
config = copy.deepcopy(original_config)
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
if self.model_tester.is_training is False:
|
|
model.eval()
|
|
|
|
max_position_embeddings = config.max_position_embeddings
|
|
|
|
# Retrieve the embeddings and clone theme
|
|
if model.config.is_encoder_decoder:
|
|
encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
|
|
encoder_cloned_embeddings = encoder_model_embed.weight.clone()
|
|
decoder_cloned_embeddings = decoder_model_embed.weight.clone()
|
|
else:
|
|
model_embed = model.get_position_embeddings()
|
|
cloned_embeddings = model_embed.weight.clone()
|
|
|
|
# Check that resizing the position embeddings with a larger max_position_embeddings increases
|
|
# the model's postion embeddings size
|
|
model.resize_position_embeddings(max_position_embeddings + 10)
|
|
self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)
|
|
|
|
# Check that it actually resizes the embeddings matrix
|
|
if model.config.is_encoder_decoder:
|
|
encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
|
|
self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
|
|
self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
|
|
else:
|
|
model_embed = model.get_position_embeddings()
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
|
|
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Check that resizing the position embeddings with a smaller max_position_embeddings decreases
|
|
# the model's max_position_embeddings
|
|
model.resize_position_embeddings(max_position_embeddings - 5)
|
|
self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)
|
|
|
|
# Check that it actually resizes the embeddings matrix
|
|
if model.config.is_encoder_decoder:
|
|
encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
|
|
self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
|
|
self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
|
|
else:
|
|
model_embed = model.get_position_embeddings()
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)
|
|
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
|
|
models_equal = True
|
|
|
|
if model.config.is_encoder_decoder:
|
|
for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
else:
|
|
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
|
|
self.assertTrue(models_equal)
|
|
|
|
def test_resize_tokens_embeddings(self):
|
|
(
|
|
original_config,
|
|
inputs_dict,
|
|
) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
if not self.test_resize_embeddings:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
config = copy.deepcopy(original_config)
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
if self.model_tester.is_training is False:
|
|
model.eval()
|
|
|
|
model_vocab_size = config.vocab_size
|
|
# Retrieve the embeddings and clone theme
|
|
model_embed = model.resize_token_embeddings(model_vocab_size)
|
|
cloned_embeddings = model_embed.weight.clone()
|
|
|
|
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
|
|
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
|
|
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
|
|
# Check that it actually resizes the embeddings matrix
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
|
|
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
|
|
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
|
|
# Check that it actually resizes the embeddings matrix
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
|
|
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
# Input ids should be clamped to the maximum size of the vocabulary
|
|
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
|
|
|
|
# make sure that decoder_input_ids are resized as well
|
|
if "decoder_input_ids" in inputs_dict:
|
|
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
|
|
models_equal = True
|
|
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
|
|
self.assertTrue(models_equal)
|
|
|
|
def test_resize_embeddings_untied(self):
|
|
(
|
|
original_config,
|
|
inputs_dict,
|
|
) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
if not self.test_resize_embeddings:
|
|
return
|
|
|
|
original_config.tie_word_embeddings = False
|
|
|
|
# if model cannot untied embeddings -> leave test
|
|
if original_config.tie_word_embeddings:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
config = copy.deepcopy(original_config)
|
|
model = model_class(config).to(torch_device)
|
|
|
|
# if no output embeddings -> leave test
|
|
if model.get_output_embeddings() is None:
|
|
continue
|
|
|
|
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
|
|
model_vocab_size = config.vocab_size
|
|
model.resize_token_embeddings(model_vocab_size + 10)
|
|
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
|
|
output_embeds = model.get_output_embeddings()
|
|
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
|
|
# Check bias if present
|
|
if output_embeds.bias is not None:
|
|
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
|
|
model.resize_token_embeddings(model_vocab_size - 15)
|
|
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
|
|
# Check that it actually resizes the embeddings matrix
|
|
output_embeds = model.get_output_embeddings()
|
|
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
|
|
# Check bias if present
|
|
if output_embeds.bias is not None:
|
|
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
# Input ids should be clamped to the maximum size of the vocabulary
|
|
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
|
|
if "decoder_input_ids" in inputs_dict:
|
|
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
def test_model_common_attributes(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
|
|
model.set_input_embeddings(nn.Embedding(10, 10))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
def test_model_main_input_name(self):
|
|
for model_class in self.all_model_classes:
|
|
model_signature = inspect.signature(getattr(model_class, "forward"))
|
|
# The main input is the name of the argument after `self`
|
|
observed_main_input_name = list(model_signature.parameters.keys())[1]
|
|
self.assertEqual(model_class.main_input_name, observed_main_input_name)
|
|
|
|
def test_correct_missing_keys(self):
|
|
if not self.test_missing_keys:
|
|
return
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
base_model_prefix = model.base_model_prefix
|
|
|
|
if hasattr(model, base_model_prefix):
|
|
with tempfile.TemporaryDirectory() as temp_dir_name:
|
|
model.base_model.save_pretrained(temp_dir_name)
|
|
model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
|
|
with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
|
|
self.assertGreater(len(loading_info["missing_keys"]), 0)
|
|
|
|
def test_tie_model_weights(self):
|
|
if not self.test_torchscript:
|
|
return
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
def check_same_values(layer_1, layer_2):
|
|
equal = True
|
|
for p1, p2 in zip(layer_1.weight, layer_2.weight):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
equal = False
|
|
return equal
|
|
|
|
for model_class in self.all_model_classes:
|
|
config.torchscript = True
|
|
model_not_tied = model_class(config)
|
|
if model_not_tied.get_output_embeddings() is None:
|
|
continue
|
|
|
|
config_tied = copy.deepcopy(config)
|
|
config_tied.torchscript = False
|
|
model_tied = model_class(config_tied)
|
|
params_tied = list(model_tied.parameters())
|
|
# Check that the embedding layer and decoding layer are the same in size and in value
|
|
# self.assertTrue(check_same_values(embeddings, decoding))
|
|
|
|
# # Check that after modification, they remain the same.
|
|
# embeddings.weight.data.div_(2)
|
|
# # Check that the embedding layer and decoding layer are the same in size and in value
|
|
# self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
|
|
# self.assertTrue(check_same_values(embeddings, decoding))
|
|
|
|
# # Check that after modification, they remain the same.
|
|
# decoding.weight.data.div_(4)
|
|
# # Check that the embedding layer and decoding layer are the same in size and in value
|
|
# self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
|
|
# self.assertTrue(check_same_values(embeddings, decoding))
|
|
|
|
# Check that after resize they remain tied.
|
|
model_tied.resize_token_embeddings(config.vocab_size + 10)
|
|
params_tied_2 = list(model_tied.parameters())
|
|
self.assertEqual(len(params_tied_2), len(params_tied))
|
|
|
|
# decoding.weight.data.mul_(20)
|
|
# # Check that the embedding layer and decoding layer are the same in size and in value
|
|
# self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
|
|
# self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))
|
|
|
|
def test_model_outputs_equivalence(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
def set_nan_tensor_to_zero(t):
|
|
t[t != t] = 0
|
|
return t
|
|
|
|
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
|
|
with torch.no_grad():
|
|
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
|
|
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
|
|
|
|
def recursive_check(tuple_object, dict_object):
|
|
if isinstance(tuple_object, (List, Tuple)):
|
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif isinstance(tuple_object, Dict):
|
|
for tuple_iterable_value, dict_iterable_value in zip(
|
|
tuple_object.values(), dict_object.values()
|
|
):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif tuple_object is None:
|
|
return
|
|
else:
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
|
|
),
|
|
msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
|
|
)
|
|
|
|
recursive_check(tuple_output, dict_output)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
check_equivalence(model, tuple_inputs, dict_inputs)
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(model, tuple_inputs, dict_inputs)
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(
|
|
model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
|
|
)
|
|
|
|
@is_pt_tf_cross_test
|
|
def test_pt_tf_model_equivalence(self):
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
import transformers
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
tf_model_class_name = "TF" + model_class.__name__ # Add the "TF" at the beginning
|
|
|
|
if not hasattr(transformers, tf_model_class_name):
|
|
# transformers does not have TF version yet
|
|
return
|
|
|
|
tf_model_class = getattr(transformers, tf_model_class_name)
|
|
|
|
config.output_hidden_states = True
|
|
|
|
tf_model = tf_model_class(config)
|
|
pt_model = model_class(config)
|
|
|
|
# make sure only tf inputs are forward that actually exist in function args
|
|
tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())
|
|
|
|
# remove all head masks
|
|
tf_input_keys.discard("head_mask")
|
|
tf_input_keys.discard("cross_attn_head_mask")
|
|
tf_input_keys.discard("decoder_head_mask")
|
|
|
|
pt_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
pt_inputs = {k: v for k, v in pt_inputs.items() if k in tf_input_keys}
|
|
|
|
# Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
|
|
pt_model.eval()
|
|
tf_inputs_dict = {}
|
|
for key, tensor in pt_inputs.items():
|
|
# skip key that does not exist in tf
|
|
if type(tensor) == bool:
|
|
tf_inputs_dict[key] = tensor
|
|
elif key == "input_values":
|
|
tf_inputs_dict[key] = tf.convert_to_tensor(tensor.numpy(), dtype=tf.float32)
|
|
elif key == "pixel_values":
|
|
tf_inputs_dict[key] = tf.convert_to_tensor(tensor.numpy(), dtype=tf.float32)
|
|
else:
|
|
tf_inputs_dict[key] = tf.convert_to_tensor(tensor.numpy(), dtype=tf.int32)
|
|
|
|
# Check we can load pt model in tf and vice-versa with model => model functions
|
|
tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
|
|
pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
|
|
|
|
# need to rename encoder-decoder "inputs" for PyTorch
|
|
# if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
|
|
# pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")
|
|
|
|
with torch.no_grad():
|
|
pto = pt_model(**pt_inputs)
|
|
tfo = tf_model(tf_inputs_dict, training=False)
|
|
|
|
tf_hidden_states = tfo[0].numpy()
|
|
pt_hidden_states = pto[0].numpy()
|
|
|
|
tf_nans = np.copy(np.isnan(tf_hidden_states))
|
|
pt_nans = np.copy(np.isnan(pt_hidden_states))
|
|
|
|
pt_hidden_states[tf_nans] = 0
|
|
tf_hidden_states[tf_nans] = 0
|
|
pt_hidden_states[pt_nans] = 0
|
|
tf_hidden_states[pt_nans] = 0
|
|
|
|
max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
|
|
self.assertLessEqual(max_diff, 4e-2)
|
|
|
|
# Check we can load pt model in tf and vice-versa with checkpoint => model functions
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
|
|
torch.save(pt_model.state_dict(), pt_checkpoint_path)
|
|
tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)
|
|
|
|
tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
|
|
tf_model.save_weights(tf_checkpoint_path)
|
|
pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)
|
|
|
|
# Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
|
|
pt_model.eval()
|
|
tf_inputs_dict = {}
|
|
for key, tensor in pt_inputs.items():
|
|
# skip key that does not exist in tf
|
|
if type(tensor) == bool:
|
|
tensor = np.array(tensor, dtype=bool)
|
|
tf_inputs_dict[key] = tf.convert_to_tensor(tensor, dtype=tf.int32)
|
|
elif key == "input_values":
|
|
tf_inputs_dict[key] = tf.convert_to_tensor(tensor.numpy(), dtype=tf.float32)
|
|
elif key == "pixel_values":
|
|
tf_inputs_dict[key] = tf.convert_to_tensor(tensor.numpy(), dtype=tf.float32)
|
|
else:
|
|
tf_inputs_dict[key] = tf.convert_to_tensor(tensor.numpy(), dtype=tf.int32)
|
|
|
|
# need to rename encoder-decoder "inputs" for PyTorch
|
|
# if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
|
|
# pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")
|
|
|
|
with torch.no_grad():
|
|
pto = pt_model(**pt_inputs)
|
|
|
|
tfo = tf_model(tf_inputs_dict)
|
|
tfo = tfo[0].numpy()
|
|
pto = pto[0].numpy()
|
|
tf_nans = np.copy(np.isnan(tfo))
|
|
pt_nans = np.copy(np.isnan(pto))
|
|
|
|
pto[tf_nans] = 0
|
|
tfo[tf_nans] = 0
|
|
pto[pt_nans] = 0
|
|
tfo[pt_nans] = 0
|
|
|
|
max_diff = np.amax(np.abs(tfo - pto))
|
|
self.assertLessEqual(max_diff, 4e-2)
|
|
|
|
def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
|
|
diff = np.abs((a - b)).max()
|
|
self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")
|
|
|
|
@is_pt_flax_cross_test
|
|
def test_equivalence_pt_to_flax(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
with self.subTest(model_class.__name__):
|
|
|
|
# load PyTorch class
|
|
pt_model = model_class(config).eval()
|
|
# Flax models don't use the `use_cache` option and cache is not returned as a default.
|
|
# So we disable `use_cache` here for PyTorch model.
|
|
pt_model.config.use_cache = False
|
|
|
|
fx_model_class_name = "Flax" + model_class.__name__
|
|
|
|
if not hasattr(transformers, fx_model_class_name):
|
|
return
|
|
|
|
fx_model_class = getattr(transformers, fx_model_class_name)
|
|
|
|
# load Flax class
|
|
fx_model = fx_model_class(config, dtype=jnp.float32)
|
|
# make sure only flax inputs are forward that actually exist in function args
|
|
fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()
|
|
|
|
# prepare inputs
|
|
pt_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
# remove function args that don't exist in Flax
|
|
pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}
|
|
|
|
fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
|
|
fx_model.params = fx_state
|
|
|
|
with torch.no_grad():
|
|
pt_outputs = pt_model(**pt_inputs).to_tuple()
|
|
|
|
# convert inputs to Flax
|
|
fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}
|
|
fx_outputs = fx_model(**fx_inputs).to_tuple()
|
|
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
|
|
for fx_output, pt_output in zip(fx_outputs, pt_outputs):
|
|
self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
pt_model.save_pretrained(tmpdirname)
|
|
fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)
|
|
|
|
fx_outputs_loaded = fx_model_loaded(**fx_inputs).to_tuple()
|
|
self.assertEqual(
|
|
len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch"
|
|
)
|
|
for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs):
|
|
self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2)
|
|
|
|
@is_pt_flax_cross_test
|
|
def test_equivalence_flax_to_pt(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
with self.subTest(model_class.__name__):
|
|
# load corresponding PyTorch class
|
|
pt_model = model_class(config).eval()
|
|
|
|
# So we disable `use_cache` here for PyTorch model.
|
|
pt_model.config.use_cache = False
|
|
|
|
fx_model_class_name = "Flax" + model_class.__name__
|
|
|
|
if not hasattr(transformers, fx_model_class_name):
|
|
# no flax model exists for this class
|
|
return
|
|
|
|
fx_model_class = getattr(transformers, fx_model_class_name)
|
|
|
|
# load Flax class
|
|
fx_model = fx_model_class(config, dtype=jnp.float32)
|
|
# make sure only flax inputs are forward that actually exist in function args
|
|
fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()
|
|
|
|
pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)
|
|
|
|
# make sure weights are tied in PyTorch
|
|
pt_model.tie_weights()
|
|
|
|
# prepare inputs
|
|
pt_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
# remove function args that don't exist in Flax
|
|
pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}
|
|
|
|
with torch.no_grad():
|
|
pt_outputs = pt_model(**pt_inputs).to_tuple()
|
|
|
|
fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}
|
|
|
|
fx_outputs = fx_model(**fx_inputs).to_tuple()
|
|
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
|
|
|
|
for fx_output, pt_output in zip(fx_outputs, pt_outputs):
|
|
self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
fx_model.save_pretrained(tmpdirname)
|
|
pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)
|
|
|
|
with torch.no_grad():
|
|
pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()
|
|
|
|
self.assertEqual(
|
|
len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch"
|
|
)
|
|
for fx_output, pt_output in zip(fx_outputs, pt_outputs_loaded):
|
|
self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)
|
|
|
|
def test_inputs_embeds(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
if not self.is_encoder_decoder:
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
else:
|
|
encoder_input_ids = inputs["input_ids"]
|
|
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
|
|
del inputs["input_ids"]
|
|
inputs.pop("decoder_input_ids", None)
|
|
|
|
wte = model.get_input_embeddings()
|
|
if not self.is_encoder_decoder:
|
|
inputs["inputs_embeds"] = wte(input_ids)
|
|
else:
|
|
inputs["inputs_embeds"] = wte(encoder_input_ids)
|
|
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
|
|
|
|
with torch.no_grad():
|
|
model(**inputs)[0]
|
|
|
|
@require_torch_multi_gpu
|
|
def test_multi_gpu_data_parallel_forward(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
# some params shouldn't be scattered by nn.DataParallel
|
|
# so just remove them if they are present.
|
|
blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
|
|
for k in blacklist_non_batched_params:
|
|
inputs_dict.pop(k, None)
|
|
|
|
# move input tensors to cuda:O
|
|
for k, v in inputs_dict.items():
|
|
if torch.is_tensor(v):
|
|
inputs_dict[k] = v.to(0)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=config)
|
|
model.to(0)
|
|
model.eval()
|
|
|
|
# Wrap model in nn.DataParallel
|
|
model = nn.DataParallel(model)
|
|
with torch.no_grad():
|
|
_ = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
@require_torch_multi_gpu
|
|
def test_model_parallelization(self):
|
|
if not self.test_model_parallel:
|
|
return
|
|
|
|
# a candidate for testing_utils
|
|
def get_current_gpu_memory_use():
|
|
"""returns a list of cuda memory allocations per GPU in MBs"""
|
|
|
|
per_device_memory = []
|
|
for id in range(torch.cuda.device_count()):
|
|
with torch.cuda.device(id):
|
|
per_device_memory.append(torch.cuda.memory_allocated() >> 20)
|
|
|
|
return per_device_memory
|
|
|
|
# Needs a large model to see the difference.
|
|
config = self.model_tester.get_large_model_config()
|
|
|
|
for model_class in self.all_parallelizable_model_classes:
|
|
torch.cuda.empty_cache()
|
|
|
|
# 1. single gpu memory load + unload + memory measurements
|
|
# Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
|
|
memory_at_start = get_current_gpu_memory_use()
|
|
|
|
# Put model on device 0 and take a memory snapshot
|
|
model = model_class(config)
|
|
model.to("cuda:0")
|
|
memory_after_model_load = get_current_gpu_memory_use()
|
|
|
|
# The memory use on device 0 should be higher than it was initially.
|
|
self.assertGreater(memory_after_model_load[0], memory_at_start[0])
|
|
|
|
del model
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
# 2. MP test
|
|
# it's essential to re-calibrate the usage before the next stage
|
|
memory_at_start = get_current_gpu_memory_use()
|
|
|
|
# Spread model layers over multiple devices
|
|
model = model_class(config)
|
|
model.parallelize()
|
|
memory_after_parallelization = get_current_gpu_memory_use()
|
|
|
|
# Assert that the memory use on all devices is higher than it was when loaded only on CPU
|
|
for n in range(torch.cuda.device_count()):
|
|
self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
|
|
|
|
# Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
|
|
self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])
|
|
|
|
# Assert that the memory use of device 1 is higher than it was when the entire model was loaded
|
|
# on device 0 and device 1 wasn't used at all
|
|
self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])
|
|
|
|
del model
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
@require_torch_multi_gpu
|
|
def test_model_parallel_equal_results(self):
|
|
if not self.test_model_parallel:
|
|
return
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_parallelizable_model_classes:
|
|
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
def cast_to_device(dictionary, device):
|
|
output = {}
|
|
for k, v in dictionary.items():
|
|
if isinstance(v, torch.Tensor):
|
|
output[k] = v.to(device)
|
|
else:
|
|
output[k] = v
|
|
|
|
return output
|
|
|
|
model = model_class(config)
|
|
output = model(**cast_to_device(inputs_dict, "cpu"))
|
|
|
|
model.parallelize()
|
|
|
|
parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
|
|
|
|
for value, parallel_value in zip(output, parallel_output):
|
|
if isinstance(value, torch.Tensor):
|
|
self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
|
|
elif isinstance(value, (Tuple, List)):
|
|
for value_, parallel_value_ in zip(value, parallel_value):
|
|
self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))
|
|
|
|
@require_torch_multi_gpu
|
|
def test_model_parallel_beam_search(self):
|
|
if not self.test_model_parallel:
|
|
return
|
|
|
|
all_generative_and_parallelizable_model_classes = tuple(
|
|
set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in all_generative_and_parallelizable_model_classes:
|
|
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
|
|
model = model_class(config)
|
|
|
|
def cast_to_device(dictionary, device):
|
|
output = {}
|
|
for k, v in dictionary.items():
|
|
if isinstance(v, torch.Tensor):
|
|
output[k] = v.to(device)
|
|
else:
|
|
output[k] = v
|
|
|
|
return output
|
|
|
|
model.parallelize()
|
|
model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)
|
|
|
|
def test_problem_types(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
problem_types = [
|
|
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
|
|
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
|
|
{"title": "regression", "num_labels": 1, "dtype": torch.float},
|
|
]
|
|
|
|
for model_class in self.all_model_classes:
|
|
if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
|
|
continue
|
|
|
|
for problem_type in problem_types:
|
|
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
|
|
|
|
config.problem_type = problem_type["title"]
|
|
config.num_labels = problem_type["num_labels"]
|
|
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.train()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
|
|
if problem_type["num_labels"] > 1:
|
|
inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])
|
|
|
|
inputs["labels"] = inputs["labels"].to(problem_type["dtype"])
|
|
|
|
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
|
|
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
|
|
# they have the same size." which is a symptom something in wrong for the regression problem.
|
|
# See https://github.com/huggingface/transformers/issues/11780
|
|
with warnings.catch_warnings(record=True) as warning_list:
|
|
loss = model(**inputs).loss
|
|
for w in warning_list:
|
|
if "Using a target size that is different to the input size" in str(w.message):
|
|
raise ValueError(
|
|
f"Something is going wrong in the regression problem: intercepted {w.message}"
|
|
)
|
|
|
|
loss.backward()
|
|
|
|
def test_load_with_mismatched_shapes(self):
|
|
if not self.test_mismatched_shapes:
|
|
return
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
|
|
continue
|
|
|
|
with self.subTest(msg=f"Testing {model_class}"):
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = model_class(config)
|
|
model.save_pretrained(tmp_dir)
|
|
|
|
# Fails when we don't set ignore_mismatched_sizes=True
|
|
with self.assertRaises(RuntimeError):
|
|
new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
|
|
with self.assertRaises(RuntimeError):
|
|
new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
|
|
|
|
logger = logging.get_logger("transformers.modeling_utils")
|
|
|
|
with CaptureLogger(logger) as cl:
|
|
new_model = AutoModelForSequenceClassification.from_pretrained(
|
|
tmp_dir, num_labels=42, ignore_mismatched_sizes=True
|
|
)
|
|
self.assertIn("the shapes did not match", cl.out)
|
|
new_model.to(torch_device)
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
logits = new_model(**inputs).logits
|
|
self.assertEqual(logits.shape[1], 42)
|
|
|
|
with CaptureLogger(logger) as cl:
|
|
new_model_without_prefix = AutoModel.from_pretrained(
|
|
tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
|
|
)
|
|
self.assertIn("the shapes did not match", cl.out)
|
|
input_ids = ids_tensor((2, 8), 10)
|
|
new_model_without_prefix.to(torch_device)
|
|
if self.is_encoder_decoder:
|
|
new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
|
|
else:
|
|
new_model_without_prefix(input_ids)
|
|
|
|
|
|
global_rng = random.Random()
|
|
|
|
|
|
def ids_tensor(shape, vocab_size, rng=None, name=None):
|
|
# Creates a random int32 tensor of the shape within the vocab size
|
|
if rng is None:
|
|
rng = global_rng
|
|
|
|
total_dims = 1
|
|
for dim in shape:
|
|
total_dims *= dim
|
|
|
|
values = []
|
|
for _ in range(total_dims):
|
|
values.append(rng.randint(0, vocab_size - 1))
|
|
|
|
return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
|
|
|
|
|
|
def random_attention_mask(shape, rng=None, name=None):
|
|
attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
|
|
# make sure that at least one token is attended to for each batch
|
|
attn_mask[:, -1] = 1
|
|
return attn_mask
|
|
|
|
|
|
def floats_tensor(shape, scale=1.0, rng=None, name=None):
|
|
"""Creates a random float32 tensor"""
|
|
if rng is None:
|
|
rng = global_rng
|
|
|
|
total_dims = 1
|
|
for dim in shape:
|
|
total_dims *= dim
|
|
|
|
values = []
|
|
for _ in range(total_dims):
|
|
values.append(rng.random() * scale)
|
|
|
|
return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
|
|
|
|
|
|
@require_torch
|
|
class ModelUtilsTest(TestCasePlus):
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
config = BertConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, PretrainedConfig)
|
|
|
|
model = BertModel.from_pretrained(model_name)
|
|
model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, PreTrainedModel)
|
|
|
|
self.assertEqual(len(loading_info["missing_keys"]), 0)
|
|
self.assertEqual(len(loading_info["unexpected_keys"]), 8)
|
|
self.assertEqual(len(loading_info["mismatched_keys"]), 0)
|
|
self.assertEqual(len(loading_info["error_msgs"]), 0)
|
|
|
|
config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
|
|
|
|
# Not sure this is the intended behavior. TODO fix Lysandre & Thom
|
|
config.name_or_path = model_name
|
|
|
|
model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
|
|
self.assertEqual(model.config.output_hidden_states, True)
|
|
self.assertEqual(model.config, config)
|
|
|
|
def test_model_from_pretrained_with_different_pretrained_model_name(self):
|
|
model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
|
|
self.assertIsNotNone(model)
|
|
|
|
logger = logging.get_logger("transformers.configuration_utils")
|
|
with CaptureLogger(logger) as cl:
|
|
BertModel.from_pretrained(TINY_T5)
|
|
self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
|
|
|
|
@require_torch
|
|
def test_model_from_config_torch_dtype(self):
|
|
# test that the model can be instantiated with dtype of user's choice - as long as it's a
|
|
# float dtype. To make it happen config.torch_dtype needs to be set before instantiating the
|
|
# model from the config object.
|
|
|
|
config = T5Config.from_pretrained(TINY_T5)
|
|
model = AutoModel.from_config(config)
|
|
# XXX: isn't supported
|
|
# model = T5ForConditionalGeneration.from_config(config)
|
|
self.assertEqual(model.dtype, torch.float32)
|
|
|
|
model = AutoModel.from_config(config, torch_dtype=torch.float16)
|
|
self.assertEqual(model.dtype, torch.float16)
|
|
|
|
# torch.set_default_dtype() supports only float dtypes, so will fail with non-float type
|
|
with self.assertRaises(ValueError):
|
|
model = AutoModel.from_config(config, torch_dtype=torch.int64)
|
|
|
|
@require_torch
|
|
def test_model_from_pretrained_torch_dtype(self):
|
|
# test that the model can be instantiated with dtype of either
|
|
# 1. explicit from_pretrained's torch_dtype argument
|
|
# 2. via autodiscovery by looking at model weights (torch_dtype="auto")
|
|
# so if a model.half() was saved, we want it to be instantiated as such.
|
|
#
|
|
# test an explicit model class, but also AutoModel separately as the latter goes through a different code path
|
|
model_path = self.get_auto_remove_tmp_dir()
|
|
|
|
# baseline - we know TINY_T5 is fp32 model
|
|
model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
|
|
self.assertEqual(model.dtype, torch.float32)
|
|
|
|
# test the default fp32 save_pretrained => from_pretrained cycle
|
|
model.save_pretrained(model_path)
|
|
model = T5ForConditionalGeneration.from_pretrained(model_path)
|
|
self.assertEqual(model.dtype, torch.float32)
|
|
# test with auto-detection
|
|
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
|
|
self.assertEqual(model.dtype, torch.float32)
|
|
|
|
# test forced loading in fp16 (even though the weights are in fp32)
|
|
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
|
|
self.assertEqual(model.dtype, torch.float16)
|
|
|
|
# test fp16 save_pretrained, loaded with auto-detection
|
|
model = model.half()
|
|
model.save_pretrained(model_path)
|
|
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
|
|
self.assertEqual(model.config.torch_dtype, torch.float16)
|
|
self.assertEqual(model.dtype, torch.float16)
|
|
|
|
# tests `config.torch_dtype` saving
|
|
with open(f"{model_path}/config.json") as f:
|
|
config_dict = json.load(f)
|
|
self.assertEqual(config_dict["torch_dtype"], "float16")
|
|
|
|
# test fp16 save_pretrained, loaded with the explicit fp16
|
|
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
|
|
self.assertEqual(model.dtype, torch.float16)
|
|
|
|
# test AutoModel separately as it goes through a different path
|
|
# test auto-detection
|
|
model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto")
|
|
self.assertEqual(model.dtype, torch.float32)
|
|
# test forcing an explicit dtype
|
|
model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16)
|
|
self.assertEqual(model.dtype, torch.float16)
|
|
|
|
|
|
@require_torch
|
|
@is_staging_test
|
|
class ModelPushToHubTester(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls._token = login(username=USER, password=PASS)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
try:
|
|
delete_repo(token=cls._token, name="test-model")
|
|
except HTTPError:
|
|
pass
|
|
|
|
try:
|
|
delete_repo(token=cls._token, name="test-model-org", organization="valid_org")
|
|
except HTTPError:
|
|
pass
|
|
|
|
try:
|
|
delete_repo(token=cls._token, name="test-dynamic-model")
|
|
except HTTPError:
|
|
pass
|
|
|
|
try:
|
|
delete_repo(token=cls._token, name="test-dynamic-model-config")
|
|
except HTTPError:
|
|
pass
|
|
|
|
def test_push_to_hub(self):
|
|
config = BertConfig(
|
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
|
|
)
|
|
model = BertModel(config)
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(os.path.join(tmp_dir, "test-model"), push_to_hub=True, use_auth_token=self._token)
|
|
|
|
new_model = BertModel.from_pretrained(f"{USER}/test-model")
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()):
|
|
self.assertTrue(torch.equal(p1, p2))
|
|
|
|
def test_push_to_hub_in_organization(self):
|
|
config = BertConfig(
|
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
|
|
)
|
|
model = BertModel(config)
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(
|
|
os.path.join(tmp_dir, "test-model-org"),
|
|
push_to_hub=True,
|
|
use_auth_token=self._token,
|
|
organization="valid_org",
|
|
)
|
|
|
|
new_model = BertModel.from_pretrained("valid_org/test-model-org")
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()):
|
|
self.assertTrue(torch.equal(p1, p2))
|
|
|
|
def test_push_to_hub_dynamic_model(self):
|
|
CustomConfig.register_for_auto_class()
|
|
CustomModel.register_for_auto_class()
|
|
|
|
config = CustomConfig(hidden_size=32)
|
|
model = CustomModel(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-model", use_auth_token=self._token)
|
|
model.save_pretrained(tmp_dir)
|
|
# checks
|
|
self.assertDictEqual(
|
|
config.auto_map,
|
|
{"AutoConfig": "custom_configuration.CustomConfig", "AutoModel": "custom_modeling.CustomModel"},
|
|
)
|
|
|
|
repo.push_to_hub()
|
|
|
|
new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
|
|
# Can't make an isinstance check because the new_model is from the CustomModel class of a dynamic module
|
|
self.assertEqual(new_model.__class__.__name__, "CustomModel")
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()):
|
|
self.assertTrue(torch.equal(p1, p2))
|
|
|
|
config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
|
|
new_model = AutoModel.from_config(config, trust_remote_code=True)
|
|
self.assertEqual(new_model.__class__.__name__, "CustomModel")
|