transformers/tests/models/modernbert_decoder/test_modeling_modernbert_decoder.py
2025-06-22 10:51:52 -04:00

200 lines
8.4 KiB
Python

# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from packaging import version
from transformers import AutoTokenizer, ModernBertDecoderConfig, is_torch_available
from transformers.testing_utils import (
require_torch,
slow,
)
from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester
from ...test_modeling_common import _config_zero_init
if is_torch_available():
import torch
from transformers import (
ModernBertDecoderForCausalLM,
ModernBertDecoderForSequenceClassification,
ModernBertDecoderModel,
)
class ModernBertDecoderModelTester(CausalLMModelTester):
config_class = ModernBertDecoderConfig
if is_torch_available():
base_model_class = ModernBertDecoderModel
causal_lm_class = ModernBertDecoderForCausalLM
@require_torch
class ModernBertDecoderModelTest(CausalLMModelTest, unittest.TestCase):
all_model_classes = (
(ModernBertDecoderModel, ModernBertDecoderForCausalLM, ModernBertDecoderForSequenceClassification)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": ModernBertDecoderModel,
"text-generation": ModernBertDecoderForCausalLM,
"text-classification": ModernBertDecoderForSequenceClassification,
}
if is_torch_available()
else {}
)
test_head_masking = False
test_pruning = False
model_tester_class = ModernBertDecoderModelTester
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
# The classifier.weight from ModernBertDecoderForSequenceClassification
# is initialized without `initializer_range`, so it's not set to ~0 via the _config_zero_init
if param.requires_grad and not (
name == "classifier.weight" and model_class in [ModernBertDecoderForSequenceClassification]
):
data = torch.flatten(param.data)
n_elements = torch.numel(data)
# skip 2.5% of elements on each side to avoid issues caused by `nn.init.trunc_normal_` described in
# https://github.com/huggingface/transformers/pull/27906#issuecomment-1846951332
n_elements_to_skip_on_each_side = int(n_elements * 0.025)
data_to_check = torch.sort(data).values
if n_elements_to_skip_on_each_side > 0:
data_to_check = data_to_check[n_elements_to_skip_on_each_side:-n_elements_to_skip_on_each_side]
self.assertIn(
((data_to_check.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@slow
@require_torch
class ModernBertDecoderIntegrationTest(unittest.TestCase):
def test_inference_causal_lm(self):
if version.parse(torch.__version__) < version.parse("2.4.0"):
self.skipTest(reason="This test requires torch >= 2.4 to run.")
model = ModernBertDecoderForCausalLM.from_pretrained(
"blab-jhu/test-32m-dec", reference_compile=False, attn_implementation="sdpa"
)
tokenizer = AutoTokenizer.from_pretrained("blab-jhu/test-32m-dec")
inputs = tokenizer("Paris is the capital of", return_tensors="pt")
with torch.no_grad():
output = model(**inputs)[0]
expected_shape = torch.Size((1, 6, model.config.vocab_size))
self.assertEqual(output.shape, expected_shape)
# compare the actual values for a slice.
expected_slice = torch.tensor(
[[[-8.0183, -7.1578, -0.4453], [-6.2909, -6.1557, 4.9063], [-6.7689, -5.8068, 6.1078]]]
)
torch.testing.assert_close(output[:, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
def test_inference_no_head(self):
if version.parse(torch.__version__) < version.parse("2.4.0"):
self.skipTest(reason="This test requires torch >= 2.4 to run.")
model = ModernBertDecoderModel.from_pretrained(
"blab-jhu/test-32m-dec", reference_compile=False, attn_implementation="sdpa"
)
tokenizer = AutoTokenizer.from_pretrained("blab-jhu/test-32m-dec")
inputs = tokenizer("Paris is the capital of", return_tensors="pt")
with torch.no_grad():
output = model(**inputs)[0]
expected_shape = torch.Size((1, 6, model.config.hidden_size))
self.assertEqual(output.shape, expected_shape)
# compare the actual values for a slice.
expected_slice = torch.tensor(
[[[0.3151, -0.6417, -0.7027], [-0.7834, -1.5810, 0.4576], [1.0614, -0.7268, -0.0871]]]
)
torch.testing.assert_close(output[:, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
def test_generation(self):
if version.parse(torch.__version__) < version.parse("2.4.0"):
self.skipTest(reason="This test requires torch >= 2.4 to run.")
model = ModernBertDecoderForCausalLM.from_pretrained("blab-jhu/test-32m-dec")
tokenizer = AutoTokenizer.from_pretrained("blab-jhu/test-32m-dec")
inputs = tokenizer("The weather today is", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=10, do_sample=False)
output_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
# Check that we got some reasonable output
self.assertEqual(len(output_text), 1)
self.assertTrue(len(output_text[0]) > len("The weather today is"))
def test_sliding_window_long_context(self):
"""
Test that ModernBertDecoder works with sliding window attention for longer sequences.
"""
if version.parse(torch.__version__) < version.parse("2.4.0"):
self.skipTest(reason="This test requires torch >= 2.4 to run.")
model = ModernBertDecoderForCausalLM.from_pretrained("blab-jhu/test-32m-dec")
tokenizer = AutoTokenizer.from_pretrained("blab-jhu/test-32m-dec")
# Create a longer input to test sliding window attention
long_input = "This is a test. " * 50 # Repeat to make it longer
inputs = tokenizer(long_input, return_tensors="pt", truncation=True, max_length=512)
outputs = model.generate(**inputs, max_new_tokens=20, do_sample=False)
# Check that generation worked with longer context
self.assertEqual(outputs.shape[0], 1)
self.assertGreater(outputs.shape[1], inputs["input_ids"].shape[1])
def test_sequence_classification(self):
"""
Test that ModernBertDecoderForSequenceClassification works correctly.
"""
if version.parse(torch.__version__) < version.parse("2.4.0"):
self.skipTest(reason="This test requires torch >= 2.4 to run.")
model = ModernBertDecoderForSequenceClassification.from_pretrained("blab-jhu/test-32m-dec", num_labels=2)
tokenizer = AutoTokenizer.from_pretrained("blab-jhu/test-32m-dec")
# Test with sample input
inputs = tokenizer("This is a positive example.", return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# Check output shape
expected_shape = (1, 2) # batch_size=1, num_labels=2
self.assertEqual(outputs.logits.shape, expected_shape)
# Test with labels
labels = torch.tensor([1])
outputs_with_loss = model(**inputs, labels=labels)
# Check that loss is computed
self.assertIsNotNone(outputs_with_loss.loss)
self.assertTrue(isinstance(outputs_with_loss.loss.item(), float))