mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* inital commit * Add doc * protect? * fixup stuffs * update tests * fix build documentation * mmmmmmm config attributes * style * nit * uodate * nit * Fix docs * protect some stuff --------- Co-authored-by: Lysandre <lysandre@huggingface.co>
142 lines
5.1 KiB
Python
142 lines
5.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Gemma2 model."""
|
|
|
|
import unittest
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, Gemma2Config, is_torch_available
|
|
from transformers.testing_utils import (
|
|
require_read_token,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...models.gemma.test_modeling_gemma import GemmaModelTest, GemmaModelTester
|
|
from ...test_configuration_common import ConfigTester
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
Gemma2ForCausalLM,
|
|
Gemma2ForSequenceClassification,
|
|
Gemma2ForTokenClassification,
|
|
Gemma2Model,
|
|
)
|
|
|
|
|
|
class Gemma2ModelTester(GemmaModelTester):
|
|
config_class = Gemma2Config
|
|
model_class = Gemma2Model
|
|
for_causal_lm_class = Gemma2ForCausalLM
|
|
for_sequence_class = Gemma2ForSequenceClassification
|
|
for_token_class = Gemma2ForTokenClassification
|
|
|
|
|
|
@require_torch
|
|
class Gemma2ModelTest(GemmaModelTest, unittest.TestCase):
|
|
all_model_classes = (
|
|
(Gemma2Model, Gemma2ForCausalLM, Gemma2ForSequenceClassification, Gemma2ForTokenClassification)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
all_generative_model_classes = ()
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": Gemma2Model,
|
|
"text-classification": Gemma2ForSequenceClassification,
|
|
"token-classification": Gemma2ForTokenClassification,
|
|
"text-generation": Gemma2ForCausalLM,
|
|
"zero-shot": Gemma2ForSequenceClassification,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
_is_stateful = True
|
|
model_split_percents = [0.5, 0.6]
|
|
_torch_compile_test_ckpt = "google/gemma-2-9b"
|
|
|
|
def setUp(self):
|
|
self.model_tester = Gemma2ModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=Gemma2Config, hidden_size=37)
|
|
|
|
@unittest.skip("Eager and SDPA do not produce the same outputs, thus this test fails")
|
|
def test_model_outputs_equivalence(self, **kwargs):
|
|
pass
|
|
|
|
@unittest.skip("Gemma2's outputs are expected to be different")
|
|
def test_eager_matches_sdpa_inference(self):
|
|
pass
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class Gemma2IntegrationTest(unittest.TestCase):
|
|
input_text = ["Hello I am doing", "Hi today"]
|
|
# This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
|
|
# Depending on the hardware we get different logits / generations
|
|
cuda_compute_capability_major_version = None
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
if is_torch_available() and torch.cuda.is_available():
|
|
# 8 is for A100 / A10 and 7 for T4
|
|
cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]
|
|
|
|
@require_read_token
|
|
def test_model_2b_bf16(self):
|
|
model_id = "google/gemma-2-9b"
|
|
EXPECTED_TEXTS = [
|
|
"<bos>Hello I am doing a project for a class and I am trying to use the <code><a-image></code>",
|
|
"<pad><pad><bos>Hi today. So, I'm going to show you how to do a problem from the textbook. So",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to(
|
|
torch_device
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_read_token
|
|
def test_model_2b_fp16(self):
|
|
model_id = "google/gemma-2-9b"
|
|
EXPECTED_TEXTS = [
|
|
"<bos>Hello I am doing a project on the effect of the temperature on the rate of a reaction. I am using a ",
|
|
"<pad><pad><bos>Hi today I'm going to be talking about the 1000-4000-",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(
|
|
torch_device
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|