transformers/tests/models/llava/test_modeling_llava.py
Raushan Turganbay 0c78ef6cd3
🔴 VLM: compile compatibility (#35724)
* llavas

* add mroe models

* fix `compile_forward` test for all models

* fix copies

* make style

* also doesn't support cache class

* fix some tests

* not copied from

* ci green?

* fix tests

* fix copies

* fix tests

* check with `numel` and remove `item`

* fix copies

* fix copies

* Update src/transformers/models/cohere2/modeling_cohere2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* opt remove cross attn

* gemma2

* fixup

* fixup

* fix newly added test

* maybe fixed?

* green please?

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-02-14 15:23:49 +01:00

644 lines
30 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Llava model."""
import unittest
import requests
from parameterized import parameterized
from transformers import (
AutoProcessor,
AutoTokenizer,
LlavaConfig,
LlavaForConditionalGeneration,
is_torch_available,
is_vision_available,
)
from transformers.testing_utils import (
cleanup,
require_bitsandbytes,
require_torch,
require_vision,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
class LlavaVisionText2TextModelTester:
def __init__(
self,
parent,
ignore_index=-100,
image_token_index=0,
projector_hidden_act="gelu",
seq_length=7,
vision_feature_select_strategy="default",
vision_feature_layer=-1,
text_config={
"model_type": "llama",
"seq_length": 7,
"is_training": True,
"use_input_mask": True,
"use_token_type_ids": False,
"use_labels": True,
"vocab_size": 99,
"hidden_size": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"type_vocab_size": 16,
"type_sequence_label_size": 2,
"initializer_range": 0.02,
"num_labels": 3,
"num_choices": 4,
"pad_token_id": 1,
},
is_training=True,
vision_config={
"image_size": 8,
"patch_size": 2,
"num_channels": 3,
"is_training": True,
"hidden_size": 32,
"projection_dim": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"dropout": 0.1,
"attention_dropout": 0.1,
"initializer_range": 0.02,
},
):
self.parent = parent
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
self.text_config = text_config
self.vision_config = vision_config
self.pad_token_id = text_config["pad_token_id"]
self.num_hidden_layers = text_config["num_hidden_layers"]
self.vocab_size = text_config["vocab_size"]
self.hidden_size = text_config["hidden_size"]
self.num_attention_heads = text_config["num_attention_heads"]
self.is_training = is_training
self.batch_size = 3
self.num_channels = 3
self.image_size = 336
self.num_image_tokens = (self.vision_config["image_size"] // self.vision_config["patch_size"]) ** 2
self.seq_length = seq_length + self.num_image_tokens
self.encoder_seq_length = self.seq_length
def get_config(self):
return LlavaConfig(
text_config=self.text_config,
vision_config=self.vision_config,
ignore_index=self.ignore_index,
image_token_index=self.image_token_index,
projector_hidden_act=self.projector_hidden_act,
vision_feature_select_strategy=self.vision_feature_select_strategy,
vision_feature_layer=self.vision_feature_layer,
image_seq_length=self.num_image_tokens,
)
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[
self.batch_size,
self.vision_config["num_channels"],
self.vision_config["image_size"],
self.vision_config["image_size"],
]
)
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
attention_mask = input_ids.ne(1).to(torch_device)
input_ids[input_ids == config.image_token_index] = self.pad_token_id
input_ids[:, : self.num_image_tokens] = config.image_token_index
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
def create_and_check_llava_model_fp16_forward(self, config, input_ids, pixel_values, attention_mask):
model = LlavaForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
with torch.autocast(device_type="cuda", dtype=torch.float16):
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
pixel_values=pixel_values.to(torch.bfloat16),
return_dict=True,
)["logits"]
self.parent.assertFalse(torch.isnan(logits).any().item())
@require_torch
class LlavaForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
"""
Model tester for `LlavaForConditionalGeneration`.
"""
all_model_classes = (LlavaForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = (
{"image-to-text": LlavaForConditionalGeneration, "image-text-to-text": LlavaForConditionalGeneration}
if is_torch_available()
else {}
)
test_pruning = False
test_head_masking = False
_is_composite = True
def setUp(self):
self.model_tester = LlavaVisionText2TextModelTester(self)
common_properties = ["image_token_index", "vision_feature_layer", "image_seq_length"]
self.config_tester = ConfigTester(
self, config_class=LlavaConfig, has_text_modality=False, common_properties=common_properties
)
def test_config(self):
self.config_tester.run_common_tests()
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
wte = model.get_input_embeddings()
inputs["inputs_embeds"] = wte(input_ids)
with torch.no_grad():
model(**inputs)
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
# while some other models require pixel_values to be present
def test_inputs_embeds_matches_input_ids(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
inputs_embeds = model.get_input_embeddings()(input_ids)
with torch.no_grad():
out_ids = model(input_ids=input_ids, **inputs)[0]
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
torch.testing.assert_close(out_embeds, out_ids)
def test_mismatching_num_image_tokens(self):
"""
Tests that VLMs through an error with explicit message saying what is wrong
when number of images don't match number of image tokens in the text.
Also we need to test multi-image cases when one prompr has multiple image tokens.
"""
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config).to(torch_device)
_ = model(**input_dict) # successfull forward with no modifications
# remove one image but leave the image token in text
input_dict["pixel_values"] = input_dict["pixel_values"][-1:, ...]
with self.assertRaises(ValueError):
_ = model(**input_dict)
# simulate multi-image case by concatenating inputs where each has exactly one image/image-token
input_ids = input_dict["input_ids"][:1]
pixel_values = input_dict["pixel_values"][:1]
input_ids = torch.cat([input_ids, input_ids], dim=0)
# one image and two image tokens raise an error
with self.assertRaises(ValueError):
_ = model(input_ids=input_ids, pixel_values=pixel_values)
# two images and two image tokens don't raise an error
pixel_values = torch.cat([pixel_values, pixel_values], dim=0)
_ = model(input_ids=input_ids, pixel_values=pixel_values)
@parameterized.expand(
[
(-1,),
([-1],),
([-1, -2],),
],
)
def test_vision_feature_layers(self, vision_feature_layer):
"""
Test that we can use either one vision feature layer, or a list of
vision feature layers.
"""
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.vision_feature_layer = vision_feature_layer
num_feature_layers = 1 if isinstance(vision_feature_layer, int) else len(vision_feature_layer)
hidden_size = config.vision_config.hidden_size
expected_features = hidden_size * num_feature_layers
for model_class in self.all_model_classes:
model = model_class(config).to(torch_device)
# We should have the right number of input features,
# and should be able to run a forward pass without exploding
assert model.multi_modal_projector.linear_1.in_features == expected_features
model(**input_dict)
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip("FlashAttention only support fp16 and bf16 data type")
def test_flash_attn_2_fp32_ln(self):
pass
@unittest.skip(
"VLMs need lots of steps to prepare images/mask correctly to get pad-free inputs. Can be tested as part of LLM test"
)
def test_flash_attention_2_padding_matches_padding_free_with_position_ids(self):
pass
@require_torch
class LlavaForConditionalGenerationIntegrationTest(unittest.TestCase):
def setUp(self):
self.processor = AutoProcessor.from_pretrained("llava-hf/bakLlava-v1-hf")
def tearDown(self):
cleanup(torch_device, gc_collect=True)
@slow
@require_bitsandbytes
def test_small_model_integration_test(self):
# Let' s make sure we test the preprocessing to replace what is used
model = LlavaForConditionalGeneration.from_pretrained("llava-hf/bakLlava-v1-hf", load_in_4bit=True)
prompt = "<image>\nUSER: What are the things I should be cautious about when I visit this place?\nASSISTANT:"
image_file = "https://llava-vl.github.io/static/images/view.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = self.processor(images=raw_image, text=prompt, return_tensors="pt").to(torch_device)
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = "\nUSER: What are the things I should be cautious about when I visit this place?\nASSISTANT: When visiting this place, there are a few things one should be cautious about. Firstly," # fmt: skip
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_bitsandbytes
def test_small_model_integration_test_llama_single(self):
# Let' s make sure we test the preprocessing to replace what is used
model_id = "llava-hf/llava-1.5-7b-hf"
model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf", load_in_4bit=True)
processor = AutoProcessor.from_pretrained(model_id)
prompt = "USER: <image>\nWhat are the things I should be cautious about when I visit this place? ASSISTANT:"
image_file = "https://llava-vl.github.io/static/images/view.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(images=raw_image, text=prompt, return_tensors="pt").to(torch_device, torch.float16)
output = model.generate(**inputs, max_new_tokens=900, do_sample=False)
EXPECTED_DECODED_TEXT = "USER: \nWhat are the things I should be cautious about when I visit this place? ASSISTANT: When visiting this place, which is a pier or dock extending over a body of water, there are a few things to be cautious about. First, be aware of the weather conditions, as sudden changes in weather can make the pier unsafe to walk on. Second, be mindful of the water depth and any potential hazards, such as submerged rocks or debris, that could cause accidents or injuries. Additionally, be cautious of the tides and currents, as they can change rapidly and pose a risk to swimmers or those who venture too close to the edge of the pier. Finally, be respectful of the environment and other visitors, and follow any posted rules or guidelines for the area." # fmt: skip
self.assertEqual(
processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_bitsandbytes
def test_small_model_integration_test_llama_batched(self):
# Let' s make sure we test the preprocessing to replace what is used
model_id = "llava-hf/llava-1.5-7b-hf"
model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf", load_in_4bit=True)
processor = AutoProcessor.from_pretrained(model_id)
prompts = [
"USER: <image>\nWhat are the things I should be cautious about when I visit this place? What should I bring with me? ASSISTANT:",
"USER: <image>\nWhat is this? ASSISTANT:",
]
image1 = Image.open(requests.get("https://llava-vl.github.io/static/images/view.jpg", stream=True).raw)
image2 = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
inputs = processor(images=[image1, image2], text=prompts, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = ['USER: \nWhat are the things I should be cautious about when I visit this place? What should I bring with me? ASSISTANT: When visiting this place, which is a pier or dock extending over a body of water, you', 'USER: \nWhat is this? ASSISTANT: The image features two cats lying down on a pink couch. One cat is located on'] # fmt: skip
self.assertEqual(
processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_bitsandbytes
def test_small_model_integration_test_batch(self):
# Let' s make sure we test the preprocessing to replace what is used
model = LlavaForConditionalGeneration.from_pretrained("llava-hf/bakLlava-v1-hf", load_in_4bit=True)
# The first batch is longer in terms of text, but only has 1 image. The second batch will be padded in text, but the first will be padded because images take more space!.
prompts = [
"USER: <image>\nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT:",
"USER: <image>\nWhat is this?\nASSISTANT:",
]
image1 = Image.open(requests.get("https://llava-vl.github.io/static/images/view.jpg", stream=True).raw)
image2 = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
inputs = self.processor(images=[image1, image2], text=prompts, return_tensors="pt", padding=True).to(
torch_device
)
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = [
'USER: \nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT: When visiting this place, there are a few things to be cautious about and items to bring.',
'USER: \nWhat is this?\nASSISTANT: Cats'
] # fmt: skip
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_bitsandbytes
def test_small_model_integration_test_llama_batched_regression(self):
# Let' s make sure we test the preprocessing to replace what is used
model_id = "llava-hf/llava-1.5-7b-hf"
# Multi-image & multi-prompt (e.g. 3 images and 2 prompts now fails with SDPA, this tests if "eager" works as before)
model = LlavaForConditionalGeneration.from_pretrained(
"llava-hf/llava-1.5-7b-hf", load_in_4bit=True, attn_implementation="eager"
)
processor = AutoProcessor.from_pretrained(model_id, pad_token="<pad>")
prompts = [
"USER: <image>\nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT:",
"USER: <image>\nWhat is this?\nASSISTANT: Two cats lying on a bed!\nUSER: <image>\nAnd this?\nASSISTANT:",
]
image1 = Image.open(requests.get("https://llava-vl.github.io/static/images/view.jpg", stream=True).raw)
image2 = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
inputs = processor(images=[image1, image2, image1], text=prompts, return_tensors="pt", padding=True).to(
torch_device
)
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = ['USER: \nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT: When visiting this place, which appears to be a dock or pier extending over a body of water', 'USER: \nWhat is this?\nASSISTANT: Two cats lying on a bed!\nUSER: \nAnd this?\nASSISTANT: A cat sleeping on a bed.'] # fmt: skip
self.assertEqual(
processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_torch
@require_vision
def test_batched_generation(self):
model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf", load_in_4bit=True)
processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
prompt1 = "<image>\n<image>\nUSER: What's the the difference of two images?\nASSISTANT:"
prompt2 = "<image>\nUSER: Describe the image.\nASSISTANT:"
prompt3 = "<image>\nUSER: Describe the image.\nASSISTANT:"
url1 = "https://images.unsplash.com/photo-1552053831-71594a27632d?q=80&w=3062&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
url2 = "https://images.unsplash.com/photo-1617258683320-61900b281ced?q=80&w=3087&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
image1 = Image.open(requests.get(url1, stream=True).raw)
image2 = Image.open(requests.get(url2, stream=True).raw)
inputs = processor(
images=[image1, image2, image1, image2],
text=[prompt1, prompt2, prompt3],
return_tensors="pt",
padding=True,
).to(torch_device)
model = model.eval()
EXPECTED_OUTPUT = [
"\n \nUSER: What's the the difference of two images?\nASSISTANT: The difference between the two images is that one shows a dog standing on a grassy field, while",
"\nUSER: Describe the image.\nASSISTANT: The image features a brown and white dog sitting on a sidewalk. The dog is holding a small",
"\nUSER: Describe the image.\nASSISTANT: The image features a lone llama standing on a grassy hill. The llama is the",
]
generate_ids = model.generate(**inputs, max_new_tokens=20)
outputs = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
self.assertEqual(outputs, EXPECTED_OUTPUT)
def test_tokenizer_integration(self):
slow_tokenizer = AutoTokenizer.from_pretrained("liuhaotian/llava-v1.6-34b", use_fast=False)
slow_tokenizer.add_tokens("<image>", True)
fast_tokenizer = AutoTokenizer.from_pretrained(
"liuhaotian/llava-v1.6-34b",
bos_token="<|startoftext|>",
eos_token="<|endoftext|>",
from_slow=True,
legacy=False,
)
fast_tokenizer.add_tokens("<image>", True)
prompt = "<|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n"
EXPECTED_OUTPUT = ['<|im_start|>', 'system', '\n', 'Answer', '▁the', '▁questions', '.', '<|im_end|>', '<|im_start|>', 'user', '\n', '<image>', '\n', 'What', '▁is', '▁shown', '▁in', '▁this', '▁image', '?', '<|im_end|>', '<|im_start|>', 'ass', 'istant', '\n'] # fmt: skip
self.assertEqual(slow_tokenizer.tokenize(prompt), EXPECTED_OUTPUT)
self.assertEqual(fast_tokenizer.tokenize(prompt), EXPECTED_OUTPUT)
@slow
@require_bitsandbytes
def test_generation_no_images(self):
model_id = "llava-hf/llava-1.5-7b-hf"
model = LlavaForConditionalGeneration.from_pretrained(model_id, load_in_4bit=True)
processor = AutoProcessor.from_pretrained(model_id)
# Prepare inputs with no images
inputs = processor(text="Hello, I am", return_tensors="pt").to(torch_device)
# Make sure that `generate` works
_ = model.generate(**inputs, max_new_tokens=20)
@slow
@require_bitsandbytes
def test_generation_siglip_backbone(self):
model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
model = LlavaForConditionalGeneration.from_pretrained(model_id, torch_dtype="float16", device_map=torch_device)
processor = AutoProcessor.from_pretrained(model_id)
# check processing with expansion of inputs (w/o expansion should work with any backbone)
processor.vision_feature_select_strategy = "default"
processor.patch_size = 14
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(
text="<|im_start|>user\n<image>\nWhat are these?<|im_end|>\n<|im_start|>assistant",
images=raw_image,
return_tensors="pt",
).to(torch_device, torch.float16)
# Make sure that `generate` works
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = "user\n\nWhat are these?\nassistant The image shows two cats, one on the left and one on the right. They appear to be resting or sleeping on a pink blanket. The cat"
self.assertTrue(processor.batch_decode(output, skip_special_tokens=True)[0] == EXPECTED_DECODED_TEXT)
@slow
def test_pixtral(self):
model_id = "mistral-community/pixtral-12b"
model = LlavaForConditionalGeneration.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
IMG_URLS = [
Image.open(requests.get("https://picsum.photos/id/237/400/300", stream=True).raw),
Image.open(requests.get("https://picsum.photos/id/231/200/300", stream=True).raw),
Image.open(requests.get("https://picsum.photos/id/27/500/500", stream=True).raw),
Image.open(requests.get("https://picsum.photos/id/17/150/600", stream=True).raw),
]
PROMPT = "<s>[INST]Describe the images.\n[IMG][IMG][IMG][IMG][/INST]"
# image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=PROMPT, images=IMG_URLS, return_tensors="pt").to(model.device)
generate_ids = model.generate(**inputs, max_new_tokens=500)
ouptut = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(ouptut)
# fmt: off
EXPECTED_GENERATION = """
Describe the images.
Certainly! Here are the descriptions of the images:
1. **Image 1**: This image features a black dog with a glossy coat sitting on a wooden surface. The dog has a calm and attentive expression, looking directly at the camera. The wooden background has a rustic appearance with visible grain and texture.
2. **Image 2**: This image captures a breathtaking view of a mountainous landscape. The mountains are rugged and covered with patches of green vegetation. The sky above is clear, and the scene conveys a sense of tranquility and natural beauty.
3. **Image 3**: This image shows a beach scene during sunset. The waves are gently rolling onto the shore, and several people can be seen in the water, possibly surfing or swimming. The sky is painted with warm hues of orange and yellow, creating a serene and picturesque atmosphere.
4. **Image 4**: This image depicts a narrow, winding path that cuts through a lush, green landscape. On either side of the path, there is dense grass and various trees, including a prominent tree with white blossoms. The sky is clear and blue, adding to the peaceful and inviting ambiance of the scene.
These descriptions provide a detailed overview of the content and atmosphere of each image.
"""
# fmt: on
# check that both inputs are handled correctly and generate the same output
self.assertEqual(ouptut, EXPECTED_GENERATION)
@slow
@require_bitsandbytes
def test_pixtral_4bit(self):
model_id = "mistral-community/pixtral-12b"
model = LlavaForConditionalGeneration.from_pretrained(model_id, load_in_4bit=True)
processor = AutoProcessor.from_pretrained(model_id)
IMG_URLS = [
Image.open(requests.get("https://picsum.photos/id/237/400/300", stream=True).raw),
Image.open(requests.get("https://picsum.photos/id/231/200/300", stream=True).raw),
]
PROMPT = "<s>[INST][IMG][IMG]Describe the images.[/INST]"
inputs = processor(text=PROMPT, images=IMG_URLS, return_tensors="pt").to(torch_device, torch.float16)
generate_ids = model.generate(**inputs, max_new_tokens=50)
output = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
EXPECTED_GENERATION = "Describe the images.The image showcases a dog, which is prominently positioned in the center, taking up a significant portion of the frame. The dog is situated against a backdrop of a wooden surface, which spans the entire image. The dog appears to be a black Labrador" # fmt: skip
self.assertEqual(output, EXPECTED_GENERATION)
@slow
@require_bitsandbytes
def test_pixtral_batched(self):
model_id = "mistral-community/pixtral-12b"
model = LlavaForConditionalGeneration.from_pretrained(model_id, load_in_4bit=True)
processor = AutoProcessor.from_pretrained(model_id)
processor.tokenizer.pad_token_id = processor.tokenizer.eos_token_id
IMG_URLS = [
Image.open(requests.get("https://picsum.photos/id/237/400/300", stream=True).raw),
Image.open(requests.get("https://picsum.photos/id/17/150/500", stream=True).raw),
]
PROMPT = [
"<s>[INST][IMG]What breed is the dog?[/INST]",
"<s>[INST][IMG]What is shown in this image?[/INST]",
]
inputs = processor(text=PROMPT, images=IMG_URLS, padding=True, return_tensors="pt").to(
torch_device, torch.float16
)
generate_ids = model.generate(**inputs, max_new_tokens=50)
output = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
EXPECTED_GENERATION = [
'What breed is the dog?The dog in the image is a black Labrador Retriever.',
'What is shown in this image?The image depicts a narrow, winding dirt path surrounded by lush greenery. The path is flanked by grass and shrubs on both sides. On the left side, there are tall trees and dense foliage, while on the right side, there'
] # fmt: skip
self.assertEqual(output, EXPECTED_GENERATION)