mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 05:40:05 +06:00

* fix_torch_device_generate_test * remove @ * up * correct some bugs * correct model * finish speech2text extension * up * up * up * up * Update utils/custom_init_isort.py * up * up * update with tokenizer * correct old tok * correct old tok * fix bug * up * up * add more tests * up * fix docs * up * fix some more tests * add better config * correct some more things " * fix tests * improve docs * Apply suggestions from code review * Apply suggestions from code review * final fixes * finalize * Apply suggestions from code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Lysandre Debut <lysandre@huggingface.co> * apply suggestions Lysandre and Sylvain * apply nicos suggestions * upload everything * finish Co-authored-by: Patrick von Platen <patrick@huggingface.co> Co-authored-by: your_github_username <your_github_email> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
157 lines
5.8 KiB
Python
157 lines
5.8 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import pytest
|
|
|
|
from transformers import AutoFeatureExtractor, AutoTokenizer, Speech2TextForConditionalGeneration, Wav2Vec2ForCTC
|
|
from transformers.pipelines import AutomaticSpeechRecognitionPipeline, pipeline
|
|
from transformers.testing_utils import is_pipeline_test, require_datasets, require_torch, require_torchaudio, slow
|
|
|
|
|
|
# We can't use this mixin because it assumes TF support.
|
|
# from .test_pipelines_common import CustomInputPipelineCommonMixin
|
|
|
|
|
|
@is_pipeline_test
|
|
class AutomaticSpeechRecognitionPipelineTests(unittest.TestCase):
|
|
@require_torch
|
|
@slow
|
|
def test_pt_defaults(self):
|
|
pipeline("automatic-speech-recognition", framework="pt")
|
|
|
|
@require_torch
|
|
def test_torch_small(self):
|
|
import numpy as np
|
|
|
|
speech_recognizer = pipeline(
|
|
task="automatic-speech-recognition",
|
|
model="facebook/s2t-small-mustc-en-fr-st",
|
|
tokenizer="facebook/s2t-small-mustc-en-fr-st",
|
|
framework="pt",
|
|
)
|
|
waveform = np.zeros((34000,))
|
|
output = speech_recognizer(waveform)
|
|
self.assertEqual(output, {"text": "C'est ce que j'ai fait à ce moment-là."})
|
|
|
|
@require_torch
|
|
def test_torch_small_no_tokenizer_files(self):
|
|
# test that model without tokenizer file cannot be loaded
|
|
with pytest.raises(ValueError):
|
|
pipeline(
|
|
task="automatic-speech-recognition",
|
|
model="hf-internal-testing/tiny-random-wav2vec2",
|
|
framework="pt",
|
|
)
|
|
|
|
@require_datasets
|
|
@require_torch
|
|
@slow
|
|
def test_torch_large(self):
|
|
import numpy as np
|
|
|
|
speech_recognizer = pipeline(
|
|
task="automatic-speech-recognition",
|
|
model="facebook/wav2vec2-base-960h",
|
|
tokenizer="facebook/wav2vec2-base-960h",
|
|
framework="pt",
|
|
)
|
|
waveform = np.zeros((34000,))
|
|
output = speech_recognizer(waveform)
|
|
self.assertEqual(output, {"text": ""})
|
|
|
|
from datasets import load_dataset
|
|
|
|
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
|
filename = ds[0]["file"]
|
|
output = speech_recognizer(filename)
|
|
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
|
|
|
|
@require_datasets
|
|
@require_torch
|
|
@slow
|
|
def test_torch_speech_encoder_decoder(self):
|
|
speech_recognizer = pipeline(
|
|
task="automatic-speech-recognition",
|
|
model="facebook/s2t-wav2vec2-large-en-de",
|
|
feature_extractor="facebook/s2t-wav2vec2-large-en-de",
|
|
framework="pt",
|
|
)
|
|
|
|
from datasets import load_dataset
|
|
|
|
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
|
filename = ds[0]["file"]
|
|
output = speech_recognizer(filename)
|
|
self.assertEqual(output, {"text": 'Ein Mann sagte zum Universum : " Sir, ich existiert! "'})
|
|
|
|
@slow
|
|
@require_torch
|
|
@require_datasets
|
|
def test_simple_wav2vec2(self):
|
|
import numpy as np
|
|
from datasets import load_dataset
|
|
|
|
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
|
|
|
|
asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
waveform = np.zeros((34000,))
|
|
output = asr(waveform)
|
|
self.assertEqual(output, {"text": ""})
|
|
|
|
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
|
filename = ds[0]["file"]
|
|
output = asr(filename)
|
|
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
|
|
|
|
filename = ds[0]["file"]
|
|
with open(filename, "rb") as f:
|
|
data = f.read()
|
|
output = asr(data)
|
|
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
|
|
|
|
@slow
|
|
@require_torch
|
|
@require_torchaudio
|
|
@require_datasets
|
|
def test_simple_s2t(self):
|
|
import numpy as np
|
|
from datasets import load_dataset
|
|
|
|
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-it-st")
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/s2t-small-mustc-en-it-st")
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-mustc-en-it-st")
|
|
|
|
asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
waveform = np.zeros((34000,))
|
|
|
|
output = asr(waveform)
|
|
self.assertEqual(output, {"text": "E questo è il motivo per cui non ci siamo mai incontrati."})
|
|
|
|
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
|
filename = ds[0]["file"]
|
|
output = asr(filename)
|
|
self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})
|
|
|
|
filename = ds[0]["file"]
|
|
with open(filename, "rb") as f:
|
|
data = f.read()
|
|
output = asr(data)
|
|
self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})
|