transformers/tests/test_pipelines_automatic_speech_recognition.py
Patrick von Platen 0b8c84e110
Add SpeechEncoderDecoder & Speech2Text2 (#13186)
* fix_torch_device_generate_test

* remove @

* up

* correct some bugs

* correct model

* finish speech2text extension

* up

* up

* up

* up

* Update utils/custom_init_isort.py

* up

* up

* update with tokenizer

* correct old tok

* correct old tok

* fix bug

* up

* up

* add more tests

* up

* fix docs

* up

* fix some more tests

* add better config

* correct some more things
"

* fix tests

* improve docs

* Apply suggestions from code review

* Apply suggestions from code review

* final fixes

* finalize

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* apply suggestions Lysandre and Sylvain

* apply nicos suggestions

* upload everything

* finish

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
Co-authored-by: your_github_username <your_github_email>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-09-01 13:33:31 +02:00

157 lines
5.8 KiB
Python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import pytest
from transformers import AutoFeatureExtractor, AutoTokenizer, Speech2TextForConditionalGeneration, Wav2Vec2ForCTC
from transformers.pipelines import AutomaticSpeechRecognitionPipeline, pipeline
from transformers.testing_utils import is_pipeline_test, require_datasets, require_torch, require_torchaudio, slow
# We can't use this mixin because it assumes TF support.
# from .test_pipelines_common import CustomInputPipelineCommonMixin
@is_pipeline_test
class AutomaticSpeechRecognitionPipelineTests(unittest.TestCase):
@require_torch
@slow
def test_pt_defaults(self):
pipeline("automatic-speech-recognition", framework="pt")
@require_torch
def test_torch_small(self):
import numpy as np
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="facebook/s2t-small-mustc-en-fr-st",
tokenizer="facebook/s2t-small-mustc-en-fr-st",
framework="pt",
)
waveform = np.zeros((34000,))
output = speech_recognizer(waveform)
self.assertEqual(output, {"text": "C'est ce que j'ai fait à ce moment-là."})
@require_torch
def test_torch_small_no_tokenizer_files(self):
# test that model without tokenizer file cannot be loaded
with pytest.raises(ValueError):
pipeline(
task="automatic-speech-recognition",
model="hf-internal-testing/tiny-random-wav2vec2",
framework="pt",
)
@require_datasets
@require_torch
@slow
def test_torch_large(self):
import numpy as np
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="facebook/wav2vec2-base-960h",
tokenizer="facebook/wav2vec2-base-960h",
framework="pt",
)
waveform = np.zeros((34000,))
output = speech_recognizer(waveform)
self.assertEqual(output, {"text": ""})
from datasets import load_dataset
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
filename = ds[0]["file"]
output = speech_recognizer(filename)
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
@require_datasets
@require_torch
@slow
def test_torch_speech_encoder_decoder(self):
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="facebook/s2t-wav2vec2-large-en-de",
feature_extractor="facebook/s2t-wav2vec2-large-en-de",
framework="pt",
)
from datasets import load_dataset
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
filename = ds[0]["file"]
output = speech_recognizer(filename)
self.assertEqual(output, {"text": 'Ein Mann sagte zum Universum : " Sir, ich existiert! "'})
@slow
@require_torch
@require_datasets
def test_simple_wav2vec2(self):
import numpy as np
from datasets import load_dataset
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
waveform = np.zeros((34000,))
output = asr(waveform)
self.assertEqual(output, {"text": ""})
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
filename = ds[0]["file"]
output = asr(filename)
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
filename = ds[0]["file"]
with open(filename, "rb") as f:
data = f.read()
output = asr(data)
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
@slow
@require_torch
@require_torchaudio
@require_datasets
def test_simple_s2t(self):
import numpy as np
from datasets import load_dataset
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-it-st")
tokenizer = AutoTokenizer.from_pretrained("facebook/s2t-small-mustc-en-it-st")
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-mustc-en-it-st")
asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
waveform = np.zeros((34000,))
output = asr(waveform)
self.assertEqual(output, {"text": "E questo è il motivo per cui non ci siamo mai incontrati."})
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
filename = ds[0]["file"]
output = asr(filename)
self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})
filename = ds[0]["file"]
with open(filename, "rb") as f:
data = f.read()
output = asr(data)
self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})