transformers/tests/test_pipelines_audio_classification.py
Patrick von Platen 0b8c84e110
Add SpeechEncoderDecoder & Speech2Text2 (#13186)
* fix_torch_device_generate_test

* remove @

* up

* correct some bugs

* correct model

* finish speech2text extension

* up

* up

* up

* up

* Update utils/custom_init_isort.py

* up

* up

* update with tokenizer

* correct old tok

* correct old tok

* fix bug

* up

* up

* add more tests

* up

* fix docs

* up

* fix some more tests

* add better config

* correct some more things
"

* fix tests

* improve docs

* Apply suggestions from code review

* Apply suggestions from code review

* final fixes

* finalize

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* apply suggestions Lysandre and Sylvain

* apply nicos suggestions

* upload everything

* finish

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
Co-authored-by: your_github_username <your_github_email>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-09-01 13:33:31 +02:00

125 lines
4.1 KiB
Python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, PreTrainedTokenizer
from transformers.pipelines import AudioClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_datasets,
require_tf,
require_torch,
slow,
)
from .test_pipelines_common import ANY, PipelineTestCaseMeta
@is_pipeline_test
@require_torch
class AudioClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
@require_datasets
@slow
def run_pipeline_test(self, model, tokenizer, feature_extractor):
import datasets
audio_classifier = AudioClassificationPipeline(model=model, feature_extractor=feature_extractor)
# test with a raw waveform
audio = np.zeros((34000,))
output = audio_classifier(audio)
# by default a model is initialized with num_labels=2
self.assertEqual(
output,
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
)
output = audio_classifier(audio, top_k=1)
self.assertEqual(
output,
[
{"score": ANY(float), "label": ANY(str)},
],
)
# test with a local file
dataset = datasets.load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
filename = dataset[0]["file"]
output = audio_classifier(filename)
self.assertEqual(
output,
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
)
@require_torch
def test_small_model_pt(self):
model = "anton-l/wav2vec2-random-tiny-classifier"
# hack: dummy tokenizer is required to prevent pipeline from failing
tokenizer = PreTrainedTokenizer()
audio_classifier = pipeline("audio-classification", model=model, tokenizer=tokenizer)
audio = np.ones((8000,))
output = audio_classifier(audio, top_k=4)
self.assertEqual(
nested_simplify(output, decimals=4),
[
{"score": 0.0843, "label": "on"},
{"score": 0.0840, "label": "left"},
{"score": 0.0837, "label": "off"},
{"score": 0.0835, "label": "yes"},
],
)
@require_torch
@require_datasets
@slow
def test_large_model_pt(self):
import datasets
model = "superb/wav2vec2-base-superb-ks"
# hack: dummy tokenizer is required to prevent pipeline from failing
tokenizer = PreTrainedTokenizer()
audio_classifier = pipeline("audio-classification", model=model, tokenizer=tokenizer)
dataset = datasets.load_dataset("anton-l/superb_dummy", "ks", split="test")
audio = np.array(dataset[3]["speech"], dtype=np.float32)
output = audio_classifier(audio, top_k=4)
self.assertEqual(
nested_simplify(output, decimals=4),
[
{"score": 0.9809, "label": "go"},
{"score": 0.0073, "label": "up"},
{"score": 0.0064, "label": "_unknown_"},
{"score": 0.0015, "label": "down"},
],
)
@require_tf
@unittest.skip("Audio classification is not implemented for TF")
def test_small_model_tf(self):
pass