mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* Created using Colaboratory * [examples] reorganize files * remove run_tpu_glue.py as superseded by TPU support in Trainer * Bugfix: int, not tuple * move files around
122 lines
4.2 KiB
Python
122 lines
4.2 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import csv
|
|
import json
|
|
|
|
|
|
class InputExample(object):
|
|
"""
|
|
A single training/test example for simple sequence classification.
|
|
|
|
Args:
|
|
guid: Unique id for the example.
|
|
text_a: string. The untokenized text of the first sequence. For single
|
|
sequence tasks, only this sequence must be specified.
|
|
text_b: (Optional) string. The untokenized text of the second sequence.
|
|
Only must be specified for sequence pair tasks.
|
|
label: (Optional) string. The label of the example. This should be
|
|
specified for train and dev examples, but not for test examples.
|
|
"""
|
|
|
|
def __init__(self, guid, text_a, text_b=None, label=None, pairID=None):
|
|
self.guid = guid
|
|
self.text_a = text_a
|
|
self.text_b = text_b
|
|
self.label = label
|
|
self.pairID = pairID
|
|
|
|
def __repr__(self):
|
|
return str(self.to_json_string())
|
|
|
|
def to_dict(self):
|
|
"""Serializes this instance to a Python dictionary."""
|
|
output = copy.deepcopy(self.__dict__)
|
|
return output
|
|
|
|
def to_json_string(self):
|
|
"""Serializes this instance to a JSON string."""
|
|
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
|
|
|
|
|
|
class InputFeatures(object):
|
|
"""
|
|
A single set of features of data.
|
|
|
|
Args:
|
|
input_ids: Indices of input sequence tokens in the vocabulary.
|
|
attention_mask: Mask to avoid performing attention on padding token indices.
|
|
Mask values selected in ``[0, 1]``:
|
|
Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens.
|
|
token_type_ids: Segment token indices to indicate first and second portions of the inputs.
|
|
label: Label corresponding to the input
|
|
"""
|
|
|
|
def __init__(self, input_ids, attention_mask, token_type_ids, label, pairID=None):
|
|
self.input_ids = input_ids
|
|
self.attention_mask = attention_mask
|
|
self.token_type_ids = token_type_ids
|
|
self.label = label
|
|
self.pairID = pairID
|
|
|
|
def __repr__(self):
|
|
return str(self.to_json_string())
|
|
|
|
def to_dict(self):
|
|
"""Serializes this instance to a Python dictionary."""
|
|
output = copy.deepcopy(self.__dict__)
|
|
return output
|
|
|
|
def to_json_string(self):
|
|
"""Serializes this instance to a JSON string."""
|
|
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
|
|
|
|
|
|
class DataProcessor(object):
|
|
"""Base class for data converters for sequence classification data sets."""
|
|
|
|
def get_example_from_tensor_dict(self, tensor_dict):
|
|
"""Gets an example from a dict with tensorflow tensors
|
|
|
|
Args:
|
|
tensor_dict: Keys and values should match the corresponding Glue
|
|
tensorflow_dataset examples.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def get_train_examples(self, data_dir):
|
|
"""Gets a collection of `InputExample`s for the train set."""
|
|
raise NotImplementedError()
|
|
|
|
def get_dev_examples(self, data_dir):
|
|
"""Gets a collection of `InputExample`s for the dev set."""
|
|
raise NotImplementedError()
|
|
|
|
def get_labels(self):
|
|
"""Gets the list of labels for this data set."""
|
|
raise NotImplementedError()
|
|
|
|
@classmethod
|
|
def _read_tsv(cls, input_file, quotechar=None):
|
|
"""Reads a tab separated value file."""
|
|
with open(input_file, "r", encoding="utf-8-sig") as f:
|
|
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
|
|
lines = []
|
|
for line in reader:
|
|
lines.append(line)
|
|
return lines
|