transformers/tests/models/llama4/test_image_processing_llama4.py
Cyril Vallez 07aab1af1e
Remove dead protected imports (#38980)
* remove them

* more
2025-06-23 13:44:50 +02:00

129 lines
4.7 KiB
Python

# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torchvision_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_vision_available() and is_torchvision_available():
from transformers import Llama4ImageProcessorFast
class Llama4ImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
max_patches=1,
do_resize=True,
size=None,
do_normalize=True,
do_pad=False,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
do_convert_rgb=True,
):
super().__init__()
size = size if size is not None else {"height": 20, "width": 20}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.max_patches = max_patches
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_pad = do_pad
self.do_convert_rgb = do_convert_rgb
def prepare_image_processor_dict(self):
return {
"max_patches": self.max_patches,
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
"do_pad": self.do_pad,
}
def expected_output_image_shape(self, images):
return self.num_channels, self.size["height"], self.size["width"]
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class Llama4ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
test_slow_image_processor = False
fast_image_processing_class = Llama4ImageProcessorFast if is_torchvision_available() else None
def setUp(self):
super().setUp()
self.image_processor_tester = Llama4ImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processor, "do_resize"))
self.assertTrue(hasattr(image_processor, "size"))
self.assertTrue(hasattr(image_processor, "do_normalize"))
self.assertTrue(hasattr(image_processor, "image_mean"))
self.assertTrue(hasattr(image_processor, "image_std"))
self.assertTrue(hasattr(image_processor, "do_convert_rgb"))
def test_split_tiles(self):
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class(**self.image_processor_dict)
image = self.image_processor_tester.prepare_image_inputs(equal_resolution=True)[0]
processed_images = image_processor(
image,
max_patches=16,
)
self.assertEqual(len(processed_images.pixel_values), 1)
self.assertEqual(processed_images.pixel_values[0].shape[0], 17)
self.assertEqual(processed_images.pixel_values[0].shape[-2:], (20, 20))
@unittest.skip("Broken on main right now. Should be fixable!")
def test_image_processor_save_load_with_autoimageprocessor(self):
pass