mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-15 02:28:24 +06:00

* First draft * Add docs * Clean up code * Convert model * Add image processor * Convert Zoe_K * More improvements * Improve variable names and docstrings * Improve variable names * Improve variable names * Replace nn.sequential * More improvements * Convert ZoeD_NK * Fix most tests * Verify pixel values * Verify pixel values * Add squeeze * Update beit to support arbitrary window sizes * Improve image processor * Improve docstring * Improve beit * Improve model outputs * Add figure * Fix beit * Update checkpoint * Fix repo id * Add _keys_to_ignore_on_load_unexpected * More improvements * Address comments * Address comments * Address comments * Address comments * Rename variable name * Add backbone_hidden_size * Vectorize * Vectorize more * Address comments * Clarify docstring * Remove backbone_hidden_size * Fix image processor * Remove print statements * Remove print statement * Add integration test * Address comments * Address comments * Address comments * Address comments * Add requires_backends * Clean up * Simplify conversion script * Simplify more * Simplify more * Simplify more * Clean up * Make sure beit is loaded correctly * Address comment * Address bin_configurations * Use bin_configurations * Convert models, add integration tests * Fix doc test * Address comments * Unify regressor classes * Clarify arguments * Improve resize_image * Add num_relative_features * Address comment * [run-slow]beit,data2vec,zoedepth * [run-slow]beit,data2vec,zoedepth * Address comments * Address comment * Address comment * Replace nn.TransformerEncoderLayer and nn.TransformerEncoder * Replace nn.MultiheadAttention * Add attributes for patch transformer to config * Add tests for ensure_multiple_of * Update organization * Add tests * [run-slow] beit data2vec * Update ruff * [run-slow] beit data2vec * Add comment * Improve docstrings, add test * Fix interpolate_pos_encoding * Fix slow tests * Add docstring * Update src/transformers/models/zoedepth/image_processing_zoedepth.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/zoedepth/image_processing_zoedepth.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Improve tests and docstrings * Use run_common_tests * Improve docstrings * Improve docstrings * Improve tests * Improve tests * Remove print statements --------- Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
188 lines
7.4 KiB
Python
188 lines
7.4 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers.file_utils import is_vision_available
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
|
|
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
|
|
|
|
|
if is_vision_available():
|
|
from transformers import ZoeDepthImageProcessor
|
|
|
|
|
|
class ZoeDepthImageProcessingTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
image_size=18,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
do_resize=True,
|
|
size=None,
|
|
ensure_multiple_of=32,
|
|
keep_aspect_ratio=False,
|
|
do_normalize=True,
|
|
image_mean=[0.5, 0.5, 0.5],
|
|
image_std=[0.5, 0.5, 0.5],
|
|
do_pad=False,
|
|
):
|
|
size = size if size is not None else {"height": 18, "width": 18}
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
self.ensure_multiple_of = ensure_multiple_of
|
|
self.keep_aspect_ratio = keep_aspect_ratio
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
self.do_pad = do_pad
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
"ensure_multiple_of": self.ensure_multiple_of,
|
|
"keep_aspect_ratio": self.keep_aspect_ratio,
|
|
"do_normalize": self.do_normalize,
|
|
"image_mean": self.image_mean,
|
|
"image_std": self.image_std,
|
|
"do_pad": self.do_pad,
|
|
}
|
|
|
|
def expected_output_image_shape(self, images):
|
|
return self.num_channels, self.ensure_multiple_of, self.ensure_multiple_of
|
|
|
|
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
|
return prepare_image_inputs(
|
|
batch_size=self.batch_size,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class ZoeDepthImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = ZoeDepthImageProcessor if is_vision_available() else None
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
self.image_processor_tester = ZoeDepthImageProcessingTester(self)
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
def test_image_processor_properties(self):
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processing, "image_mean"))
|
|
self.assertTrue(hasattr(image_processing, "image_std"))
|
|
self.assertTrue(hasattr(image_processing, "do_normalize"))
|
|
self.assertTrue(hasattr(image_processing, "do_resize"))
|
|
self.assertTrue(hasattr(image_processing, "size"))
|
|
self.assertTrue(hasattr(image_processing, "ensure_multiple_of"))
|
|
self.assertTrue(hasattr(image_processing, "do_rescale"))
|
|
self.assertTrue(hasattr(image_processing, "rescale_factor"))
|
|
self.assertTrue(hasattr(image_processing, "do_pad"))
|
|
|
|
def test_image_processor_from_dict_with_kwargs(self):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
self.assertEqual(image_processor.size, {"height": 18, "width": 18})
|
|
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
|
|
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
|
|
|
|
def test_ensure_multiple_of(self):
|
|
# Test variable by turning off all other variables which affect the size, size which is not multiple of 32
|
|
image = np.zeros((489, 640, 3))
|
|
|
|
size = {"height": 380, "width": 513}
|
|
multiple = 32
|
|
image_processor = ZoeDepthImageProcessor(
|
|
do_pad=False, ensure_multiple_of=multiple, size=size, keep_aspect_ratio=False
|
|
)
|
|
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
|
|
|
self.assertEqual(list(pixel_values.shape), [1, 3, 384, 512])
|
|
self.assertTrue(pixel_values.shape[2] % multiple == 0)
|
|
self.assertTrue(pixel_values.shape[3] % multiple == 0)
|
|
|
|
# Test variable by turning off all other variables which affect the size, size which is already multiple of 32
|
|
image = np.zeros((511, 511, 3))
|
|
|
|
height, width = 512, 512
|
|
size = {"height": height, "width": width}
|
|
multiple = 32
|
|
image_processor = ZoeDepthImageProcessor(
|
|
do_pad=False, ensure_multiple_of=multiple, size=size, keep_aspect_ratio=False
|
|
)
|
|
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
|
|
|
self.assertEqual(list(pixel_values.shape), [1, 3, height, width])
|
|
self.assertTrue(pixel_values.shape[2] % multiple == 0)
|
|
self.assertTrue(pixel_values.shape[3] % multiple == 0)
|
|
|
|
def test_keep_aspect_ratio(self):
|
|
# Test `keep_aspect_ratio=True` by turning off all other variables which affect the size
|
|
height, width = 489, 640
|
|
image = np.zeros((height, width, 3))
|
|
|
|
size = {"height": 512, "width": 512}
|
|
image_processor = ZoeDepthImageProcessor(do_pad=False, keep_aspect_ratio=True, size=size, ensure_multiple_of=1)
|
|
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
|
|
|
# As can be seen, the image is resized to the maximum size that fits in the specified size
|
|
self.assertEqual(list(pixel_values.shape), [1, 3, 512, 670])
|
|
|
|
# Test `keep_aspect_ratio=False` by turning off all other variables which affect the size
|
|
image_processor = ZoeDepthImageProcessor(
|
|
do_pad=False, keep_aspect_ratio=False, size=size, ensure_multiple_of=1
|
|
)
|
|
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
|
|
|
# As can be seen, the size is respected
|
|
self.assertEqual(list(pixel_values.shape), [1, 3, size["height"], size["width"]])
|
|
|
|
# Test `keep_aspect_ratio=True` with `ensure_multiple_of` set
|
|
image = np.zeros((489, 640, 3))
|
|
|
|
size = {"height": 511, "width": 511}
|
|
multiple = 32
|
|
image_processor = ZoeDepthImageProcessor(size=size, keep_aspect_ratio=True, ensure_multiple_of=multiple)
|
|
|
|
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
|
|
|
self.assertEqual(list(pixel_values.shape), [1, 3, 512, 672])
|
|
self.assertTrue(pixel_values.shape[2] % multiple == 0)
|
|
self.assertTrue(pixel_values.shape[3] % multiple == 0)
|