transformers/tests/models/zoedepth/test_image_processing_zoedepth.py
NielsRogge 06fd7972ac
Add ZoeDepth (#30136)
* First draft

* Add docs

* Clean up code

* Convert model

* Add image processor

* Convert Zoe_K

* More improvements

* Improve variable names and docstrings

* Improve variable names

* Improve variable names

* Replace nn.sequential

* More improvements

* Convert ZoeD_NK

* Fix most tests

* Verify pixel values

* Verify pixel values

* Add squeeze

* Update beit to support arbitrary window sizes

* Improve image processor

* Improve docstring

* Improve beit

* Improve model outputs

* Add figure

* Fix beit

* Update checkpoint

* Fix repo id

* Add _keys_to_ignore_on_load_unexpected

* More improvements

* Address comments

* Address comments

* Address comments

* Address comments

* Rename variable name

* Add backbone_hidden_size

* Vectorize

* Vectorize more

* Address comments

* Clarify docstring

* Remove backbone_hidden_size

* Fix image processor

* Remove print statements

* Remove print statement

* Add integration test

* Address comments

* Address comments

* Address comments

* Address comments

* Add requires_backends

* Clean up

* Simplify conversion script

* Simplify more

* Simplify more

* Simplify more

* Clean up

* Make sure beit is loaded correctly

* Address comment

* Address bin_configurations

* Use bin_configurations

* Convert models, add integration tests

* Fix doc test

* Address comments

* Unify regressor classes

* Clarify arguments

* Improve resize_image

* Add num_relative_features

* Address comment

* [run-slow]beit,data2vec,zoedepth

* [run-slow]beit,data2vec,zoedepth

* Address comments

* Address comment

* Address comment

* Replace nn.TransformerEncoderLayer and nn.TransformerEncoder

* Replace nn.MultiheadAttention

* Add attributes for patch transformer to config

* Add tests for ensure_multiple_of

* Update organization

* Add tests

* [run-slow] beit data2vec

* Update ruff

* [run-slow] beit data2vec

* Add comment

* Improve docstrings, add test

* Fix interpolate_pos_encoding

* Fix slow tests

* Add docstring

* Update src/transformers/models/zoedepth/image_processing_zoedepth.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/zoedepth/image_processing_zoedepth.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Improve tests and docstrings

* Use run_common_tests

* Improve docstrings

* Improve docstrings

* Improve tests

* Improve tests

* Remove print statements

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-08 11:43:33 +02:00

188 lines
7.4 KiB
Python

# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers.file_utils import is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_vision_available():
from transformers import ZoeDepthImageProcessor
class ZoeDepthImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
ensure_multiple_of=32,
keep_aspect_ratio=False,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
do_pad=False,
):
size = size if size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.ensure_multiple_of = ensure_multiple_of
self.keep_aspect_ratio = keep_aspect_ratio
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_pad = do_pad
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"ensure_multiple_of": self.ensure_multiple_of,
"keep_aspect_ratio": self.keep_aspect_ratio,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_pad": self.do_pad,
}
def expected_output_image_shape(self, images):
return self.num_channels, self.ensure_multiple_of, self.ensure_multiple_of
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class ZoeDepthImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = ZoeDepthImageProcessor if is_vision_available() else None
def setUp(self):
super().setUp()
self.image_processor_tester = ZoeDepthImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "ensure_multiple_of"))
self.assertTrue(hasattr(image_processing, "do_rescale"))
self.assertTrue(hasattr(image_processing, "rescale_factor"))
self.assertTrue(hasattr(image_processing, "do_pad"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"height": 18, "width": 18})
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
def test_ensure_multiple_of(self):
# Test variable by turning off all other variables which affect the size, size which is not multiple of 32
image = np.zeros((489, 640, 3))
size = {"height": 380, "width": 513}
multiple = 32
image_processor = ZoeDepthImageProcessor(
do_pad=False, ensure_multiple_of=multiple, size=size, keep_aspect_ratio=False
)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
self.assertEqual(list(pixel_values.shape), [1, 3, 384, 512])
self.assertTrue(pixel_values.shape[2] % multiple == 0)
self.assertTrue(pixel_values.shape[3] % multiple == 0)
# Test variable by turning off all other variables which affect the size, size which is already multiple of 32
image = np.zeros((511, 511, 3))
height, width = 512, 512
size = {"height": height, "width": width}
multiple = 32
image_processor = ZoeDepthImageProcessor(
do_pad=False, ensure_multiple_of=multiple, size=size, keep_aspect_ratio=False
)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
self.assertEqual(list(pixel_values.shape), [1, 3, height, width])
self.assertTrue(pixel_values.shape[2] % multiple == 0)
self.assertTrue(pixel_values.shape[3] % multiple == 0)
def test_keep_aspect_ratio(self):
# Test `keep_aspect_ratio=True` by turning off all other variables which affect the size
height, width = 489, 640
image = np.zeros((height, width, 3))
size = {"height": 512, "width": 512}
image_processor = ZoeDepthImageProcessor(do_pad=False, keep_aspect_ratio=True, size=size, ensure_multiple_of=1)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
# As can be seen, the image is resized to the maximum size that fits in the specified size
self.assertEqual(list(pixel_values.shape), [1, 3, 512, 670])
# Test `keep_aspect_ratio=False` by turning off all other variables which affect the size
image_processor = ZoeDepthImageProcessor(
do_pad=False, keep_aspect_ratio=False, size=size, ensure_multiple_of=1
)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
# As can be seen, the size is respected
self.assertEqual(list(pixel_values.shape), [1, 3, size["height"], size["width"]])
# Test `keep_aspect_ratio=True` with `ensure_multiple_of` set
image = np.zeros((489, 640, 3))
size = {"height": 511, "width": 511}
multiple = 32
image_processor = ZoeDepthImageProcessor(size=size, keep_aspect_ratio=True, ensure_multiple_of=multiple)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
self.assertEqual(list(pixel_values.shape), [1, 3, 512, 672])
self.assertTrue(pixel_values.shape[2] % multiple == 0)
self.assertTrue(pixel_values.shape[3] % multiple == 0)