mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 18:51:14 +06:00

* remove make on the fly linear embedding * start refactor * big first refactor * save intermediate * save intermediat * correct mask issue * save tests * refactor padding masks * make all tests pass * further refactor * make pegasus test pass * fix bool if * fix leftover tests * continue * bart renaming * delete torchscript test hack * fix imports in tests * correct shift * fix docs and repo cons * re-add fix for FSTM * typo in test * fix typo * fix another typo * continue * hot fix 2 for tf * small fixes * refactor types linting * continue * finish refactor * fix import in tests * better bart names * further refactor and add test * delete hack * apply sylvains and lysandres commens * small perf improv * further perf improv * improv perf * fix typo * make style * small perf improv
1511 lines
66 KiB
Python
1511 lines
66 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""PyTorch BART model, ported from the fairseq repo."""
|
|
import math
|
|
import random
|
|
import warnings
|
|
from typing import Dict, Optional, Tuple
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
from torch.nn import CrossEntropyLoss
|
|
|
|
from ...activations import ACT2FN
|
|
from ...file_utils import (
|
|
add_code_sample_docstrings,
|
|
add_end_docstrings,
|
|
add_start_docstrings,
|
|
add_start_docstrings_to_model_forward,
|
|
replace_return_docstrings,
|
|
)
|
|
from ...modeling_outputs import (
|
|
BaseModelOutput,
|
|
BaseModelOutputWithPastAndCrossAttentions,
|
|
Seq2SeqLMOutput,
|
|
Seq2SeqModelOutput,
|
|
Seq2SeqQuestionAnsweringModelOutput,
|
|
Seq2SeqSequenceClassifierOutput,
|
|
)
|
|
from ...modeling_utils import PreTrainedModel
|
|
from ...utils import logging
|
|
from .configuration_bart import BartConfig
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
_CONFIG_FOR_DOC = "BartConfig"
|
|
_TOKENIZER_FOR_DOC = "BartTokenizer"
|
|
|
|
|
|
BART_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
|
"facebook/bart-base",
|
|
"facebook/bart-large",
|
|
"facebook/bart-large-mnli",
|
|
"facebook/bart-large-cnn",
|
|
"facebook/bart-large-xsum",
|
|
"facebook/mbart-large-en-ro",
|
|
]
|
|
# This list is incomplete. See all BART models at https://huggingface.co/models?filter=bart
|
|
|
|
|
|
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int):
|
|
"""
|
|
Shift input ids one token to the right, and wrap the last non pad token (usually <eos>).
|
|
"""
|
|
prev_output_tokens = input_ids.clone()
|
|
index_of_eos = (input_ids.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1)
|
|
prev_output_tokens[:, 0] = input_ids.gather(1, index_of_eos).squeeze()
|
|
prev_output_tokens[:, 1:] = input_ids[:, :-1]
|
|
return prev_output_tokens
|
|
|
|
|
|
def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
|
|
"""
|
|
Make causal mask used for bi-directional self-attention.
|
|
"""
|
|
bsz, tgt_len = input_ids_shape
|
|
mask = torch.full((tgt_len, tgt_len), float("-inf"))
|
|
mask_cond = torch.arange(mask.size(-1))
|
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
|
mask = mask.to(dtype)
|
|
|
|
if past_key_values_length > 0:
|
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
|
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
|
|
|
|
|
def _expand_mask(
|
|
mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None, past_key_values_length: int = 0
|
|
):
|
|
"""
|
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
|
"""
|
|
bsz, src_len = mask.size()
|
|
tgt_len = tgt_len if tgt_len is not None else src_len
|
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
|
|
|
if past_key_values_length > 0:
|
|
# concat fully attendend attention_mask to the beginning if `past_key_values` are used
|
|
expanded_mask = torch.cat(
|
|
[
|
|
torch.ones(bsz, 1, tgt_len, past_key_values_length, device=expanded_mask.device, dtype=dtype),
|
|
expanded_mask,
|
|
],
|
|
dim=-1,
|
|
)
|
|
|
|
inverted_mask = 1.0 - expanded_mask
|
|
|
|
return inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min)
|
|
|
|
|
|
def BartLayerNorm(normalized_shape: torch.Size, eps: float = 1e-5, elementwise_affine: bool = True):
|
|
if torch.cuda.is_available():
|
|
try:
|
|
from apex.normalization import FusedLayerNorm
|
|
|
|
return FusedLayerNorm(normalized_shape, eps, elementwise_affine)
|
|
except ImportError:
|
|
pass
|
|
return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine)
|
|
|
|
|
|
class BartLearnedPositionalEmbedding(nn.Embedding):
|
|
"""
|
|
This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting
|
|
based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to
|
|
the forward function.
|
|
"""
|
|
|
|
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, offset: int):
|
|
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
|
# and adjust num_embeddings appropriately. Other models dont have this hack
|
|
self.offset = offset
|
|
assert padding_idx is not None, "`padding_idx` should not be None, but of type int"
|
|
num_embeddings += offset
|
|
super().__init__(num_embeddings, embedding_dim, padding_idx=padding_idx)
|
|
|
|
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
|
|
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
|
|
bsz, seq_len = input_ids_shape[:2]
|
|
positions = torch.arange(
|
|
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
|
|
)
|
|
return super().forward(positions + self.offset)
|
|
|
|
|
|
class BartSinusoidalPositionalEmbedding(nn.Embedding):
|
|
"""This module produces sinusoidal positional embeddings of any length."""
|
|
|
|
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
|
super().__init__(num_positions, embedding_dim)
|
|
self.weight = self._init_weight(self.weight)
|
|
|
|
@staticmethod
|
|
def _init_weight(out: nn.Parameter):
|
|
"""
|
|
Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
|
|
the 2nd half of the vector. [dim // 2:]
|
|
"""
|
|
n_pos, dim = out.shape
|
|
position_enc = np.array(
|
|
[[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
|
|
)
|
|
out.requires_grad = False # set early to avoid an error in pytorch-1.8+
|
|
sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
|
|
out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
|
|
out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
|
|
out.detach_()
|
|
return out
|
|
|
|
@torch.no_grad()
|
|
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
|
|
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
|
|
bsz, seq_len = input_ids_shape[:2]
|
|
positions = torch.arange(
|
|
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
|
|
)
|
|
return super().forward(positions)
|
|
|
|
|
|
class BartAttention(nn.Module):
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
num_heads: int,
|
|
dropout: float = 0.0,
|
|
is_decoder: bool = False,
|
|
bias: bool = True,
|
|
):
|
|
super().__init__()
|
|
self.embed_dim = embed_dim
|
|
self.num_heads = num_heads
|
|
self.dropout = dropout
|
|
self.head_dim = embed_dim // num_heads
|
|
assert (
|
|
self.head_dim * num_heads == self.embed_dim
|
|
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {num_heads})."
|
|
self.scaling = self.head_dim ** -0.5
|
|
self.is_decoder = is_decoder
|
|
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
key_value_states: Optional[torch.Tensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: bool = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
"""Input shape: Batch x Time x Channel"""
|
|
|
|
# if key_value_states are provided this layer is used as a cross-attention layer
|
|
# for the decoder
|
|
is_cross_attention = key_value_states is not None
|
|
bsz, tgt_len, embed_dim = hidden_states.size()
|
|
|
|
# get query proj
|
|
query_states = self.q_proj(hidden_states) * self.scaling
|
|
# get key, value proj
|
|
if is_cross_attention and past_key_value is not None:
|
|
# reuse k,v, cross_attentions
|
|
key_states = past_key_value[0]
|
|
value_states = past_key_value[1]
|
|
elif is_cross_attention:
|
|
# cross_attentions
|
|
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
|
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
|
elif past_key_value is not None:
|
|
# reuse k, v, self_attention
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
|
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
|
else:
|
|
# self_attention
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
|
|
|
if self.is_decoder:
|
|
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
|
# Further calls to cross_attention layer can then reuse all cross-attention
|
|
# key/value_states (first "if" case)
|
|
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
|
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
|
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
|
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
|
past_key_value = (key_states, value_states)
|
|
|
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
|
key_states = key_states.view(*proj_shape)
|
|
value_states = value_states.view(*proj_shape)
|
|
|
|
src_len = key_states.size(1)
|
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
|
|
|
assert attn_weights.size() == (
|
|
bsz * self.num_heads,
|
|
tgt_len,
|
|
src_len,
|
|
), f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
|
|
|
|
if attn_mask is not None:
|
|
assert attn_mask.size() == (
|
|
bsz,
|
|
1,
|
|
tgt_len,
|
|
src_len,
|
|
), f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attn_mask.size()}"
|
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_mask
|
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
|
|
|
attn_weights = F.softmax(attn_weights, dim=-1)
|
|
|
|
if output_attentions:
|
|
# this operation is a bit akward, but it's required to
|
|
# make sure that attn_weights keeps its gradient.
|
|
# In order to do so, attn_weights have to reshaped
|
|
# twice and have to be reused in the following
|
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
|
else:
|
|
attn_weights_reshaped = None
|
|
|
|
attn_probs = F.dropout(attn_weights, p=self.dropout, training=self.training)
|
|
|
|
attn_output = torch.bmm(attn_probs, value_states)
|
|
|
|
assert attn_output.size() == (
|
|
bsz * self.num_heads,
|
|
tgt_len,
|
|
self.head_dim,
|
|
), f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}"
|
|
|
|
attn_output = (
|
|
attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
|
.transpose(1, 2)
|
|
.reshape(bsz, tgt_len, embed_dim)
|
|
)
|
|
|
|
attn_output = self.out_proj(attn_output)
|
|
|
|
return attn_output, attn_weights_reshaped, past_key_value
|
|
|
|
|
|
class BartEncoderLayer(nn.Module):
|
|
def __init__(self, config: BartConfig):
|
|
super().__init__()
|
|
self.embed_dim = config.d_model
|
|
self.self_attn = BartAttention(
|
|
embed_dim=self.embed_dim,
|
|
num_heads=config.encoder_attention_heads,
|
|
dropout=config.attention_dropout,
|
|
)
|
|
self.normalize_before = config.normalize_before
|
|
self.self_attn_layer_norm = BartLayerNorm(self.embed_dim)
|
|
self.dropout = config.dropout
|
|
self.activation_fn = ACT2FN[config.activation_function]
|
|
self.activation_dropout = config.activation_dropout
|
|
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
|
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
|
self.final_layer_norm = BartLayerNorm(self.embed_dim)
|
|
|
|
def forward(
|
|
self, hidden_states: torch.Tensor, encoder_padding_mask: torch.Tensor, output_attentions: bool = False
|
|
):
|
|
"""
|
|
Args:
|
|
hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
|
|
encoder_padding_mask (:obj:`torch.FloatTensor`): attention mask of size
|
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
|
|
|
Returns:
|
|
encoded output of shape `(seq_len, batch, embed_dim)`
|
|
"""
|
|
residual = hidden_states
|
|
if self.normalize_before:
|
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
hidden_states, attn_weights, _ = self.self_attn(
|
|
hidden_states=hidden_states, attn_mask=encoder_padding_mask, output_attentions=output_attentions
|
|
)
|
|
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
hidden_states = residual + hidden_states
|
|
if not self.normalize_before:
|
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
|
|
residual = hidden_states
|
|
if self.normalize_before:
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
|
hidden_states = F.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
|
hidden_states = self.fc2(hidden_states)
|
|
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
hidden_states = residual + hidden_states
|
|
if not self.normalize_before:
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
|
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
|
return hidden_states, attn_weights
|
|
|
|
|
|
class BartDecoderLayer(nn.Module):
|
|
def __init__(self, config: BartConfig):
|
|
super().__init__()
|
|
self.embed_dim = config.d_model
|
|
|
|
self.self_attn = BartAttention(
|
|
embed_dim=self.embed_dim,
|
|
num_heads=config.decoder_attention_heads,
|
|
dropout=config.attention_dropout,
|
|
is_decoder=True,
|
|
)
|
|
self.dropout = config.dropout
|
|
self.activation_fn = ACT2FN[config.activation_function]
|
|
self.activation_dropout = config.activation_dropout
|
|
self.normalize_before = config.normalize_before
|
|
|
|
self.self_attn_layer_norm = BartLayerNorm(self.embed_dim)
|
|
self.encoder_attn = BartAttention(
|
|
self.embed_dim,
|
|
config.decoder_attention_heads,
|
|
dropout=config.attention_dropout,
|
|
is_decoder=True,
|
|
)
|
|
self.encoder_attn_layer_norm = BartLayerNorm(self.embed_dim)
|
|
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
|
|
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
|
|
self.final_layer_norm = BartLayerNorm(self.embed_dim)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: torch.Tensor,
|
|
encoder_attn_mask: Optional[torch.Tensor] = None,
|
|
past_key_value: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[torch.Tensor] = False,
|
|
):
|
|
residual = hidden_states
|
|
if self.normalize_before:
|
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
# Self Attention
|
|
|
|
# decoder uni-directional self-attention cached key/values tuple is at first position
|
|
self_attn_past_key_value = past_key_value[0] if past_key_value is not None else None
|
|
hidden_states, self_attn_weights, self_attn_present_key_value = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
past_key_value=self_attn_past_key_value,
|
|
attn_mask=attn_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
hidden_states = residual + hidden_states
|
|
if not self.normalize_before:
|
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
|
|
# Cross-Attention Block
|
|
cross_attn_present_key_value = None
|
|
cross_attn_weights = None
|
|
if encoder_hidden_states is not None:
|
|
residual = hidden_states
|
|
if self.normalize_before:
|
|
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
|
|
|
# cross_attn cached key/values tuple is at second position
|
|
cross_attn_past_key_value = past_key_value[1] if past_key_value is not None else None
|
|
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
|
hidden_states=hidden_states,
|
|
key_value_states=encoder_hidden_states,
|
|
attn_mask=encoder_attn_mask,
|
|
past_key_value=cross_attn_past_key_value,
|
|
output_attentions=output_attentions,
|
|
)
|
|
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
hidden_states = residual + hidden_states
|
|
if not self.normalize_before:
|
|
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
|
|
|
# Fully Connected
|
|
residual = hidden_states
|
|
if self.normalize_before:
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
|
hidden_states = F.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
|
hidden_states = self.fc2(hidden_states)
|
|
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
hidden_states = residual + hidden_states
|
|
if not self.normalize_before:
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
|
|
# make sure decoder uni-directional self-attn at 1st position and cross-attn at 2nd position.
|
|
present_key_value = (self_attn_present_key_value, cross_attn_present_key_value)
|
|
|
|
return (
|
|
hidden_states,
|
|
self_attn_weights,
|
|
present_key_value,
|
|
cross_attn_weights,
|
|
)
|
|
|
|
|
|
class BartClassificationHead(nn.Module):
|
|
"""Head for sentence-level classification tasks."""
|
|
|
|
def __init__(
|
|
self,
|
|
input_dim: int,
|
|
inner_dim: int,
|
|
num_classes: int,
|
|
pooler_dropout: float,
|
|
):
|
|
super().__init__()
|
|
self.dense = nn.Linear(input_dim, inner_dim)
|
|
self.dropout = nn.Dropout(p=pooler_dropout)
|
|
self.out_proj = nn.Linear(inner_dim, num_classes)
|
|
|
|
def forward(self, hidden_states: torch.Tensor):
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = torch.tanh(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.out_proj(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class BartPretrainedModel(PreTrainedModel):
|
|
config_class = BartConfig
|
|
base_model_prefix = "model"
|
|
|
|
def _init_weights(self, module):
|
|
std = self.config.init_std
|
|
if isinstance(module, nn.Linear):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, BartSinusoidalPositionalEmbedding):
|
|
pass
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
@property
|
|
def dummy_inputs(self):
|
|
pad_token = self.config.pad_token_id
|
|
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
|
|
dummy_inputs = {
|
|
"attention_mask": input_ids.ne(pad_token),
|
|
"input_ids": input_ids,
|
|
}
|
|
return dummy_inputs
|
|
|
|
|
|
class PretrainedBartModel(BartPretrainedModel):
|
|
def __init_subclass__(self):
|
|
warnings.warn(
|
|
"The class `PretrainedBartModel` has been depreciated, please use `BartPretrainedModel` instead.",
|
|
FutureWarning,
|
|
)
|
|
|
|
|
|
BART_START_DOCSTRING = r"""
|
|
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
|
|
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
|
|
pruning heads etc.)
|
|
|
|
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
|
|
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
|
general usage and behavior.
|
|
|
|
Parameters:
|
|
config (:class:`~transformers.BartConfig`): Model configuration class with all the parameters of the model.
|
|
Initializing with a config file does not load the weights associated with the model, only the
|
|
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
|
|
weights.
|
|
"""
|
|
|
|
BART_GENERATION_EXAMPLE = r"""
|
|
Summarization example::
|
|
|
|
>>> from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig
|
|
|
|
>>> # see ``examples/summarization/bart/run_eval.py`` for a longer example
|
|
>>> model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
|
|
>>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
|
|
|
|
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
|
|
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt')
|
|
|
|
>>> # Generate Summary
|
|
>>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5, early_stopping=True)
|
|
>>> print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids])
|
|
"""
|
|
|
|
BART_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
|
|
Indices can be obtained using :class:`~transformers.BartTokenizer`. See
|
|
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
|
details.
|
|
|
|
`What are input IDs? <../glossary.html#input-ids>`__
|
|
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
`What are attention masks? <../glossary.html#attention-mask>`__
|
|
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
|
|
Provide for translation and summarization training. By default, the model will create this tensor by
|
|
shifting the :obj:`input_ids` to the right, following the paper.
|
|
decoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, tgt_seq_len)`, `optional`):
|
|
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
|
|
also be used by default.
|
|
|
|
If you want to change padding behavior, you should read :func:`modeling_bart._prepare_decoder_inputs` and
|
|
modify to your needs. See diagram 1 in `the paper <https://arxiv.org/abs/1910.13461>`__ for more
|
|
information on the default strategy.
|
|
encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`):
|
|
Tuple consists of (:obj:`last_hidden_state`, `optional`: :obj:`hidden_states`, `optional`:
|
|
:obj:`attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)`,
|
|
`optional`) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
|
|
cross-attention of the decoder.
|
|
past_key_values (:obj:`Tuple[Tuple[Tuple[torch.Tensor]]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
|
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
|
|
|
|
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
|
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
|
instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size, sequence_length)`.
|
|
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
|
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
|
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
|
|
vectors than the model's internal embedding lookup matrix.
|
|
decoder_inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, target_sequence_length, hidden_size)`, `optional`):
|
|
Optionally, instead of passing :obj:`decoder_input_ids` you can choose to directly pass an embedded
|
|
representation. If :obj:`past_key_values` is used, optionally only the last :obj:`decoder_inputs_embeds`
|
|
have to be input (see :obj:`past_key_values`). This is useful if you want more control over how to convert
|
|
:obj:`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
|
|
|
If :obj:`decoder_input_ids` and :obj:`decoder_inputs_embeds` are both unset, :obj:`decoder_inputs_embeds`
|
|
takes the value of :obj:`inputs_embeds`.
|
|
use_cache (:obj:`bool`, `optional`):
|
|
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
|
decoding (see :obj:`past_key_values`).
|
|
output_attentions (:obj:`bool`, `optional`):
|
|
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (:obj:`bool`, `optional`):
|
|
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
|
more detail.
|
|
return_dict (:obj:`bool`, `optional`):
|
|
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
|
"""
|
|
|
|
|
|
class BartEncoder(BartPretrainedModel):
|
|
"""
|
|
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
|
:class:`BartEncoderLayer`.
|
|
|
|
Args:
|
|
config: BartConfig
|
|
embed_tokens (torch.nn.Embedding): output embedding
|
|
"""
|
|
|
|
def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = None):
|
|
super().__init__(config)
|
|
|
|
self.dropout = config.dropout
|
|
self.layerdrop = config.encoder_layerdrop
|
|
|
|
embed_dim = config.d_model
|
|
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
|
self.padding_idx = config.pad_token_id
|
|
self.max_source_positions = config.max_position_embeddings
|
|
|
|
if embed_tokens is not None:
|
|
self.embed_tokens = embed_tokens
|
|
else:
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
|
|
|
|
if config.static_position_embeddings:
|
|
self.embed_positions = BartSinusoidalPositionalEmbedding(
|
|
config.max_position_embeddings, embed_dim, self.padding_idx
|
|
)
|
|
else:
|
|
self.embed_positions = BartLearnedPositionalEmbedding(
|
|
config.max_position_embeddings,
|
|
embed_dim,
|
|
self.padding_idx,
|
|
config.extra_pos_embeddings,
|
|
)
|
|
self.layers = nn.ModuleList([BartEncoderLayer(config) for _ in range(config.encoder_layers)])
|
|
self.layernorm_embedding = BartLayerNorm(embed_dim) if config.normalize_embedding else nn.Identity()
|
|
# mbart has one extra layer_norm
|
|
self.layer_norm = BartLayerNorm(config.d_model) if config.add_final_layer_norm else None
|
|
|
|
self.init_weights()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
inputs_embeds=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
r"""
|
|
Args:
|
|
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
|
provide it.
|
|
|
|
Indices can be obtained using :class:`~transformers.BartTokenizer`. See
|
|
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
|
|
for details.
|
|
|
|
`What are input IDs? <../glossary.html#input-ids>`__
|
|
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
`What are attention masks? <../glossary.html#attention-mask>`__
|
|
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
|
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
|
|
representation. This is useful if you want more control over how to convert :obj:`input_ids` indices
|
|
into associated vectors than the model's internal embedding lookup matrix.
|
|
output_attentions (:obj:`bool`, `optional`):
|
|
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
|
|
returned tensors for more detail.
|
|
output_hidden_states (:obj:`bool`, `optional`):
|
|
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
|
|
for more detail.
|
|
return_dict (:obj:`bool`, `optional`):
|
|
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
|
"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
input_shape = input_ids.size()
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
|
elif inputs_embeds is not None:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
else:
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
|
|
|
embed_pos = self.embed_positions(input_shape)
|
|
|
|
hidden_states = inputs_embeds + embed_pos
|
|
hidden_states = self.layernorm_embedding(hidden_states)
|
|
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
|
|
# expand attention_mask
|
|
if attention_mask is not None:
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
|
|
|
|
encoder_states = () if output_hidden_states else None
|
|
all_attentions = () if output_attentions else None
|
|
for encoder_layer in self.layers:
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
|
dropout_probability = random.uniform(0, 1)
|
|
if self.training and (dropout_probability < self.layerdrop): # skip the layer
|
|
attn = None
|
|
else:
|
|
hidden_states, attn = encoder_layer(hidden_states, attention_mask, output_attentions=output_attentions)
|
|
|
|
if output_attentions:
|
|
all_attentions = all_attentions + (attn,)
|
|
|
|
if self.layer_norm:
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
|
return BaseModelOutput(
|
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
|
)
|
|
|
|
|
|
class BartDecoder(BartPretrainedModel):
|
|
"""
|
|
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`BartDecoderLayer`
|
|
|
|
Args:
|
|
config: BartConfig
|
|
embed_tokens (torch.nn.Embedding): output embedding
|
|
"""
|
|
|
|
def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = None):
|
|
super().__init__(config)
|
|
self.dropout = config.dropout
|
|
self.layerdrop = config.decoder_layerdrop
|
|
self.do_blenderbot_90_layernorm = config.do_blenderbot_90_layernorm # layernorm variant
|
|
self.padding_idx = config.pad_token_id
|
|
self.max_target_positions = config.max_position_embeddings
|
|
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
|
|
|
|
if embed_tokens is not None:
|
|
self.embed_tokens = embed_tokens
|
|
else:
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
|
|
|
|
if config.static_position_embeddings:
|
|
self.embed_positions = BartSinusoidalPositionalEmbedding(
|
|
config.max_position_embeddings, config.d_model, config.pad_token_id
|
|
)
|
|
else:
|
|
self.embed_positions = BartLearnedPositionalEmbedding(
|
|
config.max_position_embeddings,
|
|
config.d_model,
|
|
self.padding_idx,
|
|
config.extra_pos_embeddings,
|
|
)
|
|
self.layers = nn.ModuleList([BartDecoderLayer(config) for _ in range(config.decoder_layers)])
|
|
self.layernorm_embedding = BartLayerNorm(config.d_model) if config.normalize_embedding else nn.Identity()
|
|
self.layer_norm = BartLayerNorm(config.d_model) if config.add_final_layer_norm else None
|
|
|
|
self.init_weights()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
encoder_hidden_states=None,
|
|
encoder_attention_mask=None,
|
|
past_key_values=None,
|
|
inputs_embeds=None,
|
|
use_cache=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
r"""
|
|
Args:
|
|
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
|
provide it.
|
|
|
|
Indices can be obtained using :class:`~transformers.BartTokenizer`. See
|
|
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
|
|
for details.
|
|
|
|
`What are input IDs? <../glossary.html#input-ids>`__
|
|
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
`What are attention masks? <../glossary.html#attention-mask>`__
|
|
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, encoder_sequence_length, hidden_size)`, `optional`):
|
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
|
of the decoder.
|
|
encoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, encoder_sequence_length)`, `optional`):
|
|
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
|
selected in ``[0, 1]``:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
`What are attention masks? <../glossary.html#attention-mask>`__
|
|
past_key_values (:obj:`Tuple[Tuple[Tuple[torch.Tensor]]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
|
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
|
|
decoding.
|
|
|
|
If :obj:`past_key_values` are used, the user can optionally input only the last
|
|
:obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of
|
|
shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size,
|
|
sequence_length)`.
|
|
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
|
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
|
|
representation. This is useful if you want more control over how to convert :obj:`input_ids` indices
|
|
into associated vectors than the model's internal embedding lookup matrix.
|
|
output_attentions (:obj:`bool`, `optional`):
|
|
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
|
|
returned tensors for more detail.
|
|
output_hidden_states (:obj:`bool`, `optional`):
|
|
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
|
|
for more detail.
|
|
return_dict (:obj:`bool`, `optional`):
|
|
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
|
"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
input_shape = input_ids.size()
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
|
elif inputs_embeds is not None:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
else:
|
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
|
|
|
# past_key_values_length
|
|
past_key_values_length = past_key_values[0][0][0].shape[2] if past_key_values is not None else 0
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
|
|
|
# create causal mask
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
attn_mask = None
|
|
if input_shape[-1] > 1:
|
|
attn_mask = _make_causal_mask(
|
|
input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
|
|
).to(self.device)
|
|
|
|
# create decoder_padding_mask if not provided and needed
|
|
# 4.12.20 (PVP): Not a fan of this "magical" function that
|
|
# automatically creates attention_mask for padded tokens
|
|
# => this is inconsistent with other models
|
|
# => Pegasus uses the pad_token as decoder_start_token_id, so that this could
|
|
# pose some problems.
|
|
if (
|
|
attention_mask is None
|
|
and input_ids is not None
|
|
and input_shape[-1] > 1
|
|
and self.config.pad_token_id in input_ids
|
|
):
|
|
# should be kept for backwards compatibility
|
|
attention_mask = input_ids.ne(self.config.pad_token_id).to(torch.long)
|
|
# never mask leading token, even if it is pad
|
|
attention_mask[:, 0] = attention_mask[:, 1]
|
|
|
|
if attention_mask is not None and attn_mask is not None:
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
attn_mask = attn_mask + _expand_mask(
|
|
attention_mask, inputs_embeds.dtype, past_key_values_length=past_key_values_length
|
|
)
|
|
|
|
# expand encoder attention mask
|
|
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
|
|
|
|
# embed positions
|
|
positions = self.embed_positions(input_shape, past_key_values_length)
|
|
|
|
if self.do_blenderbot_90_layernorm:
|
|
hidden_states = self.layernorm_embedding(inputs_embeds)
|
|
hidden_states += positions
|
|
else:
|
|
hidden_states = inputs_embeds + positions
|
|
hidden_states = self.layernorm_embedding(hidden_states)
|
|
|
|
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
all_cross_attentions = () if output_attentions else None
|
|
next_decoder_cache = () if use_cache else None
|
|
for idx, decoder_layer in enumerate(self.layers):
|
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
dropout_probability = random.uniform(0, 1)
|
|
if self.training and (dropout_probability < self.layerdrop):
|
|
continue
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
|
|
|
hidden_states, layer_self_attn, present_key_value, layer_cross_attn = decoder_layer(
|
|
hidden_states,
|
|
encoder_hidden_states,
|
|
encoder_attn_mask=encoder_attention_mask,
|
|
attn_mask=attn_mask,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
if use_cache:
|
|
next_decoder_cache += (present_key_value,)
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_self_attn,)
|
|
all_cross_attentions += (layer_cross_attn,)
|
|
|
|
# add hidden states from the last decoder layer
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
# if config.add_final_layer_norm (mBART)
|
|
if self.layer_norm:
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
if not return_dict:
|
|
return tuple(
|
|
v
|
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
|
|
if v is not None
|
|
)
|
|
return BaseModelOutputWithPastAndCrossAttentions(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
cross_attentions=all_cross_attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare BART Model outputting raw hidden-states without any specific head on top.",
|
|
BART_START_DOCSTRING,
|
|
)
|
|
class BartModel(BartPretrainedModel):
|
|
def __init__(self, config: BartConfig):
|
|
super().__init__(config)
|
|
|
|
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
|
|
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
|
|
|
|
self.encoder = BartEncoder(config, self.shared)
|
|
self.decoder = BartDecoder(config, self.shared)
|
|
|
|
self.init_weights()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.shared
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.shared = value
|
|
self.encoder.embed_tokens = self.shared
|
|
self.decoder.embed_tokens = self.shared
|
|
|
|
def get_encoder(self):
|
|
return self.encoder
|
|
|
|
def get_decoder(self):
|
|
return self.decoder
|
|
|
|
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
|
|
@add_code_sample_docstrings(
|
|
tokenizer_class=_TOKENIZER_FOR_DOC,
|
|
checkpoint="facebook/bart-large",
|
|
output_type=Seq2SeqModelOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
decoder_input_ids=None,
|
|
decoder_attention_mask=None,
|
|
encoder_outputs=None,
|
|
past_key_values=None,
|
|
inputs_embeds=None,
|
|
decoder_inputs_embeds=None,
|
|
use_cache=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
|
|
# 4.12.20 (PVP): Not a fan of this "magical" function and
|
|
# also wonder how often it's actually used ... keep now
|
|
# for backward compatibility
|
|
# -> is this used for backward compatibility
|
|
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
|
decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id)
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if encoder_outputs is None:
|
|
encoder_outputs = self.encoder(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=False
|
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
|
encoder_outputs = BaseModelOutput(
|
|
last_hidden_state=encoder_outputs[0],
|
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
|
)
|
|
|
|
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
|
decoder_outputs = self.decoder(
|
|
input_ids=decoder_input_ids,
|
|
attention_mask=decoder_attention_mask,
|
|
encoder_hidden_states=encoder_outputs[0],
|
|
encoder_attention_mask=attention_mask,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=decoder_inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
if not return_dict:
|
|
return decoder_outputs + encoder_outputs
|
|
|
|
return Seq2SeqModelOutput(
|
|
last_hidden_state=decoder_outputs.last_hidden_state,
|
|
past_key_values=decoder_outputs.past_key_values,
|
|
decoder_hidden_states=decoder_outputs.hidden_states,
|
|
decoder_attentions=decoder_outputs.attentions,
|
|
cross_attentions=decoder_outputs.cross_attentions,
|
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
|
encoder_hidden_states=encoder_outputs.hidden_states,
|
|
encoder_attentions=encoder_outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The BART Model with a language modeling head. Can be used for summarization.", BART_START_DOCSTRING
|
|
)
|
|
class BartForConditionalGeneration(BartPretrainedModel):
|
|
base_model_prefix = "model"
|
|
_keys_to_ignore_on_load_missing = [
|
|
r"final_logits_bias",
|
|
r"encoder\.version",
|
|
r"decoder\.version",
|
|
r"lm_head\.weight",
|
|
]
|
|
|
|
def __init__(self, config: BartConfig):
|
|
super().__init__(config)
|
|
self.model = BartModel(config)
|
|
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
|
|
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
|
|
|
|
self.init_weights()
|
|
|
|
def get_encoder(self):
|
|
return self.model.get_encoder()
|
|
|
|
def get_decoder(self):
|
|
return self.model.get_decoder()
|
|
|
|
def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
|
|
new_embeddings = super().resize_token_embeddings(new_num_tokens)
|
|
self._resize_final_logits_bias(new_num_tokens)
|
|
return new_embeddings
|
|
|
|
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
|
|
old_num_tokens = self.final_logits_bias.shape[-1]
|
|
if new_num_tokens <= old_num_tokens:
|
|
new_bias = self.final_logits_bias[:, :new_num_tokens]
|
|
else:
|
|
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
|
|
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
|
|
self.register_buffer("final_logits_bias", new_bias)
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
|
@add_end_docstrings(BART_GENERATION_EXAMPLE)
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
decoder_input_ids=None,
|
|
decoder_attention_mask=None,
|
|
encoder_outputs=None,
|
|
past_key_values=None,
|
|
inputs_embeds=None,
|
|
decoder_inputs_embeds=None,
|
|
labels=None,
|
|
use_cache=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
r"""
|
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
|
Labels for computing the masked language modeling loss. Indices should either be in ``[0, ...,
|
|
config.vocab_size]`` or -100 (see ``input_ids`` docstring). Tokens with indices set to ``-100`` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``.
|
|
|
|
Returns:
|
|
|
|
Conditional generation example::
|
|
|
|
>>> # Mask filling only works for bart-large
|
|
>>> from transformers import BartTokenizer, BartForConditionalGeneration
|
|
>>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
|
|
>>> TXT = "My friends are <mask> but they eat too many carbs."
|
|
|
|
>>> model = BartForConditionalGeneration.from_pretrained('facebook/bart-large')
|
|
>>> input_ids = tokenizer([TXT], return_tensors='pt')['input_ids']
|
|
>>> logits = model(input_ids).logits
|
|
|
|
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
|
|
>>> probs = logits[0, masked_index].softmax(dim=0)
|
|
>>> values, predictions = probs.topk(5)
|
|
|
|
>>> tokenizer.decode(predictions).split()
|
|
>>> # ['good', 'great', 'all', 'really', 'very']
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if labels is not None:
|
|
use_cache = False
|
|
if decoder_input_ids is None:
|
|
decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id)
|
|
|
|
outputs = self.model(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_input_ids=decoder_input_ids,
|
|
encoder_outputs=encoder_outputs,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
decoder_inputs_embeds=decoder_inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
|
|
|
|
masked_lm_loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
# TODO(SS): do we need to ignore pad tokens in labels?
|
|
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
|
|
|
|
if not return_dict:
|
|
output = (lm_logits,) + outputs[1:]
|
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
|
|
|
return Seq2SeqLMOutput(
|
|
loss=masked_lm_loss,
|
|
logits=lm_logits,
|
|
past_key_values=outputs.past_key_values,
|
|
decoder_hidden_states=outputs.decoder_hidden_states,
|
|
decoder_attentions=outputs.decoder_attentions,
|
|
cross_attentions=outputs.cross_attentions,
|
|
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
|
encoder_hidden_states=outputs.encoder_hidden_states,
|
|
encoder_attentions=outputs.encoder_attentions,
|
|
)
|
|
|
|
def prepare_inputs_for_generation(
|
|
self, decoder_input_ids, past=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
|
|
):
|
|
# cut decoder_input_ids if past is used
|
|
if past is not None:
|
|
decoder_input_ids = decoder_input_ids[:, -1:]
|
|
|
|
return {
|
|
"input_ids": None, # encoder_outputs is defined. input_ids not needed
|
|
"encoder_outputs": encoder_outputs,
|
|
"past_key_values": past,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"attention_mask": attention_mask,
|
|
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
|
|
}
|
|
|
|
def adjust_logits_during_generation(self, logits, cur_len, max_length):
|
|
if cur_len == 1 and self.config.force_bos_token_to_be_generated:
|
|
self._force_token_id_to_be_generated(logits, self.config.bos_token_id)
|
|
elif cur_len == max_length - 1 and self.config.eos_token_id is not None:
|
|
self._force_token_id_to_be_generated(logits, self.config.eos_token_id)
|
|
return logits
|
|
|
|
@staticmethod
|
|
def _force_token_id_to_be_generated(scores, token_id) -> None:
|
|
"""force one of token_ids to be generated by setting prob of all other tokens to 0 (logprob=-float("inf"))"""
|
|
scores[:, [x for x in range(scores.shape[1]) if x != token_id]] = -float("inf")
|
|
|
|
@staticmethod
|
|
def _reorder_cache(past, beam_idx):
|
|
def _reorder_buffer(cache: Tuple[torch.Tensor], new_order) -> Dict:
|
|
return tuple(past_state.index_select(0, new_order) for past_state in cache)
|
|
|
|
reordered_past = ()
|
|
for layer_past in past:
|
|
reordered_past += (tuple(_reorder_buffer(cache, beam_idx) for cache in layer_past),)
|
|
return reordered_past
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
Bart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
|
|
tasks.
|
|
""",
|
|
BART_START_DOCSTRING,
|
|
)
|
|
class BartForSequenceClassification(BartPretrainedModel):
|
|
def __init__(self, config: BartConfig, **kwargs):
|
|
super().__init__(config, **kwargs)
|
|
self.model = BartModel(config)
|
|
self.classification_head = BartClassificationHead(
|
|
config.d_model,
|
|
config.d_model,
|
|
config.num_labels,
|
|
config.classifier_dropout,
|
|
)
|
|
self.model._init_weights(self.classification_head.dense)
|
|
self.model._init_weights(self.classification_head.out_proj)
|
|
|
|
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
|
|
@add_code_sample_docstrings(
|
|
tokenizer_class=_TOKENIZER_FOR_DOC,
|
|
checkpoint="facebook/bart-large",
|
|
output_type=Seq2SeqSequenceClassifierOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
decoder_input_ids=None,
|
|
decoder_attention_mask=None,
|
|
encoder_outputs=None,
|
|
inputs_embeds=None,
|
|
decoder_inputs_embeds=None,
|
|
labels=None,
|
|
use_cache=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
r"""
|
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
|
config.num_labels - 1]`. If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
if labels is not None:
|
|
use_cache = False
|
|
|
|
if input_ids is None and inputs_embeds is not None:
|
|
raise NotImplementedError(
|
|
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
|
|
)
|
|
|
|
outputs = self.model(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
encoder_outputs=encoder_outputs,
|
|
inputs_embeds=inputs_embeds,
|
|
decoder_inputs_embeds=decoder_inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
hidden_states = outputs[0] # last hidden state
|
|
|
|
eos_mask = input_ids.eq(self.config.eos_token_id)
|
|
|
|
if len(torch.unique(eos_mask.sum(1))) > 1:
|
|
raise ValueError("All examples must have the same number of <eos> tokens.")
|
|
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
|
|
:, -1, :
|
|
]
|
|
logits = self.classification_head(sentence_representation)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return Seq2SeqSequenceClassifierOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
decoder_hidden_states=outputs.decoder_hidden_states,
|
|
decoder_attentions=outputs.decoder_attentions,
|
|
cross_attentions=outputs.cross_attentions,
|
|
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
|
encoder_hidden_states=outputs.encoder_hidden_states,
|
|
encoder_attentions=outputs.encoder_attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
BART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
|
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
|
""",
|
|
BART_START_DOCSTRING,
|
|
)
|
|
class BartForQuestionAnswering(BartPretrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
config.num_labels = 2
|
|
self.num_labels = config.num_labels
|
|
|
|
self.model = BartModel(config)
|
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
self.model._init_weights(self.qa_outputs)
|
|
|
|
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
|
|
@add_code_sample_docstrings(
|
|
tokenizer_class=_TOKENIZER_FOR_DOC,
|
|
checkpoint="facebook/bart-large",
|
|
output_type=Seq2SeqQuestionAnsweringModelOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
decoder_input_ids=None,
|
|
decoder_attention_mask=None,
|
|
encoder_outputs=None,
|
|
start_positions=None,
|
|
end_positions=None,
|
|
inputs_embeds=None,
|
|
decoder_inputs_embeds=None,
|
|
use_cache=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
r"""
|
|
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
are not taken into account for computing the loss.
|
|
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
are not taken into account for computing the loss.
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
if start_positions is not None and end_positions is not None:
|
|
use_cache = False
|
|
|
|
outputs = self.model(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
encoder_outputs=encoder_outputs,
|
|
inputs_embeds=inputs_embeds,
|
|
decoder_inputs_embeds=decoder_inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
sequence_output = outputs[0]
|
|
|
|
logits = self.qa_outputs(sequence_output)
|
|
start_logits, end_logits = logits.split(1, dim=-1)
|
|
start_logits = start_logits.squeeze(-1)
|
|
end_logits = end_logits.squeeze(-1)
|
|
|
|
total_loss = None
|
|
if start_positions is not None and end_positions is not None:
|
|
# If we are on multi-GPU, split add a dimension
|
|
if len(start_positions.size()) > 1:
|
|
start_positions = start_positions.squeeze(-1)
|
|
if len(end_positions.size()) > 1:
|
|
end_positions = end_positions.squeeze(-1)
|
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
|
ignored_index = start_logits.size(1)
|
|
start_positions.clamp_(0, ignored_index)
|
|
end_positions.clamp_(0, ignored_index)
|
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
|
start_loss = loss_fct(start_logits, start_positions)
|
|
end_loss = loss_fct(end_logits, end_positions)
|
|
total_loss = (start_loss + end_loss) / 2
|
|
|
|
if not return_dict:
|
|
output = (
|
|
start_logits,
|
|
end_logits,
|
|
) + outputs[1:]
|
|
return ((total_loss,) + output) if total_loss is not None else output
|
|
|
|
return Seq2SeqQuestionAnsweringModelOutput(
|
|
loss=total_loss,
|
|
start_logits=start_logits,
|
|
end_logits=end_logits,
|
|
past_key_values=outputs.past_key_values,
|
|
decoder_hidden_states=outputs.decoder_hidden_states,
|
|
decoder_attentions=outputs.decoder_attentions,
|
|
cross_attentions=outputs.cross_attentions,
|
|
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
|
encoder_hidden_states=outputs.encoder_hidden_states,
|
|
encoder_attentions=outputs.encoder_attentions,
|
|
)
|