mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00
631 lines
25 KiB
Python
631 lines
25 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch PaliGemma model."""
|
|
|
|
import unittest
|
|
|
|
import requests
|
|
|
|
from transformers import (
|
|
PaliGemmaConfig,
|
|
PaliGemmaForConditionalGeneration,
|
|
PaliGemmaProcessor,
|
|
is_torch_available,
|
|
is_vision_available,
|
|
)
|
|
from transformers.testing_utils import (
|
|
cleanup,
|
|
require_read_token,
|
|
require_torch,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
class PaliGemmaVisionText2TextModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
ignore_index=-100,
|
|
image_token_index=0,
|
|
projector_hidden_act="gelu",
|
|
seq_length=25,
|
|
vision_feature_select_strategy="default",
|
|
vision_feature_layer=-1,
|
|
projection_dim=32,
|
|
text_config={
|
|
"model_type": "gemma",
|
|
"seq_length": 128,
|
|
"is_training": True,
|
|
# "use_input_mask": True,
|
|
"use_token_type_ids": False,
|
|
"use_labels": True,
|
|
"vocab_size": 99,
|
|
"hidden_size": 32,
|
|
"num_hidden_layers": 2,
|
|
"num_attention_heads": 4,
|
|
"num_key_value_heads": 1,
|
|
"head_dim": 8,
|
|
"intermediate_size": 37,
|
|
"hidden_activation": "gelu_pytorch_tanh",
|
|
"hidden_dropout_prob": 0.1,
|
|
"attention_probs_dropout_prob": 0.1,
|
|
"max_position_embeddings": 512,
|
|
"type_vocab_size": 16,
|
|
"type_sequence_label_size": 2,
|
|
"initializer_range": 0.02,
|
|
"num_labels": 3,
|
|
"num_choices": 4,
|
|
"pad_token_id": 1,
|
|
},
|
|
is_training=True,
|
|
vision_config={
|
|
"use_labels": True,
|
|
"image_size": 20,
|
|
"patch_size": 5,
|
|
"num_image_tokens": 4,
|
|
"num_channels": 3,
|
|
"is_training": True,
|
|
"hidden_size": 32,
|
|
"projection_dim": 32,
|
|
"num_key_value_heads": 1,
|
|
"num_hidden_layers": 2,
|
|
"num_attention_heads": 4,
|
|
"intermediate_size": 37,
|
|
"dropout": 0.1,
|
|
"attention_dropout": 0.1,
|
|
"initializer_range": 0.02,
|
|
},
|
|
use_cache=False,
|
|
):
|
|
self.parent = parent
|
|
self.ignore_index = ignore_index
|
|
# `image_token_index` is set to 0 to pass "resize_embeddings" test, do not modify
|
|
self.image_token_index = image_token_index
|
|
self.projector_hidden_act = projector_hidden_act
|
|
self.vision_feature_select_strategy = vision_feature_select_strategy
|
|
self.vision_feature_layer = vision_feature_layer
|
|
self.text_config = text_config
|
|
self.vision_config = vision_config
|
|
self.seq_length = seq_length
|
|
self.projection_dim = projection_dim
|
|
self.pad_token_id = text_config["pad_token_id"]
|
|
|
|
self.num_hidden_layers = text_config["num_hidden_layers"]
|
|
self.vocab_size = text_config["vocab_size"]
|
|
self.hidden_size = text_config["hidden_size"]
|
|
self.num_attention_heads = text_config["num_attention_heads"]
|
|
self.is_training = is_training
|
|
|
|
self.batch_size = 3
|
|
self.num_channels = vision_config["num_channels"]
|
|
self.image_size = vision_config["image_size"]
|
|
self.encoder_seq_length = seq_length
|
|
self.use_cache = use_cache
|
|
|
|
def get_config(self):
|
|
return PaliGemmaConfig(
|
|
text_config=self.text_config,
|
|
vision_config=self.vision_config,
|
|
ignore_index=self.ignore_index,
|
|
image_token_index=self.image_token_index,
|
|
projector_hidden_act=self.projector_hidden_act,
|
|
projection_dim=self.projection_dim,
|
|
vision_feature_select_strategy=self.vision_feature_select_strategy,
|
|
vision_feature_layer=self.vision_feature_layer,
|
|
)
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor(
|
|
[
|
|
self.batch_size,
|
|
self.vision_config["num_channels"],
|
|
self.vision_config["image_size"],
|
|
self.vision_config["image_size"],
|
|
]
|
|
)
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
|
|
attention_mask = input_ids.ne(self.pad_token_id).to(torch_device)
|
|
|
|
# set the 16 first tokens to be image, and ensure that no other tokens are image tokens
|
|
# do not change this unless you modified image size or patch size
|
|
input_ids[input_ids == config.image_token_index] = self.pad_token_id
|
|
input_ids[:, :16] = config.image_token_index
|
|
inputs_dict = {
|
|
"pixel_values": pixel_values,
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"labels": input_ids,
|
|
"token_type_ids": torch.zeros_like(input_ids),
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class PaliGemmaForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
|
"""
|
|
Model tester for `PaliGemmaForConditionalGeneration`.
|
|
"""
|
|
|
|
all_model_classes = (PaliGemmaForConditionalGeneration,) if is_torch_available() else ()
|
|
all_generative_model_classes = (PaliGemmaForConditionalGeneration,) if is_torch_available() else ()
|
|
pipeline_model_mapping = {"image-text-to-text": PaliGemmaForConditionalGeneration}
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_torchscript = False
|
|
test_head_masking = False
|
|
_is_composite = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = PaliGemmaVisionText2TextModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=PaliGemmaConfig, has_text_modality=False)
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
def test_inputs_embeds(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values"]
|
|
|
|
wte = model.get_input_embeddings()
|
|
inputs["inputs_embeds"] = wte(input_ids)
|
|
|
|
with torch.no_grad():
|
|
model(**inputs)
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
# while some other models require pixel_values to be present
|
|
def test_inputs_embeds_matches_input_ids(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values"]
|
|
|
|
inputs_embeds = model.get_input_embeddings()(input_ids)
|
|
|
|
with torch.no_grad():
|
|
out_ids = model(input_ids=input_ids, **inputs)[0]
|
|
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
|
|
self.assertTrue(torch.allclose(out_embeds, out_ids))
|
|
|
|
# Copied from tests.models.llava.test_modeling_llava.LlavaForConditionalGenerationModelTest.test_mismatching_num_image_tokens
|
|
def test_mismatching_num_image_tokens(self):
|
|
"""
|
|
Tests that VLMs through an error with explicit message saying what is wrong
|
|
when number of images don't match number of image tokens in the text.
|
|
Also we need to test multi-image cases when one prompr has multiple image tokens.
|
|
"""
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device)
|
|
_ = model(**input_dict) # successfull forward with no modifications
|
|
|
|
# remove one image but leave the image token in text
|
|
input_dict["pixel_values"] = input_dict["pixel_values"][-1:, ...]
|
|
with self.assertRaises(ValueError):
|
|
_ = model(**input_dict)
|
|
|
|
# simulate multi-image case by concatenating inputs where each has exactly one image/image-token
|
|
input_ids = input_dict["input_ids"][:1]
|
|
pixel_values = input_dict["pixel_values"][:1]
|
|
input_ids = torch.cat([input_ids, input_ids], dim=0)
|
|
|
|
# one image and two image tokens raise an error
|
|
with self.assertRaises(ValueError):
|
|
_ = model(input_ids=input_ids, pixel_values=pixel_values)
|
|
|
|
# two images and two image tokens don't raise an error
|
|
pixel_values = torch.cat([pixel_values, pixel_values], dim=0)
|
|
_ = model(input_ids=input_ids, pixel_values=pixel_values)
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
|
|
def test_cpu_offload(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
|
|
def test_disk_offload_bin(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
|
|
def test_disk_offload_safetensors(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
|
|
def test_model_parallelism(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="PaliGemmma's SigLip encoder uses the same initialization scheme as the Flax original implementation"
|
|
)
|
|
def test_initialization(self):
|
|
pass
|
|
|
|
# TODO extend valid outputs to include this test @Molbap
|
|
@unittest.skip(reason="PaliGemma has currently one output format.")
|
|
def test_model_outputs_equivalence(self):
|
|
pass
|
|
|
|
# TODO fix the loss = nan in the testing configuration chosen @Molbap
|
|
@unittest.skip(reason="Edge case giving loss nan values in testing configuration.")
|
|
def test_determinism(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="PaliGemma does not use feedforward chunking.")
|
|
def test_feed_forward_chunking(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="PaliGemma does not support low_cpu_mem_usage.")
|
|
def test_save_load_low_cpu_mem_usage(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="PaliGemma does not support low_cpu_mem_usage.")
|
|
def test_save_load_low_cpu_mem_usage_checkpoints(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="PaliGemma does not support low_cpu_mem_usage.")
|
|
def test_save_load_low_cpu_mem_usage_no_safetensors(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="VLMs doen't accept inputs embeds and pixel values at the same time. So if the test passed for bacbone LM, it passes for VLM also"
|
|
)
|
|
def test_generate_from_inputs_embeds_with_static_cache(self):
|
|
pass
|
|
|
|
@unittest.skip("FlashAttention only support fp16 and bf16 data type")
|
|
def test_flash_attn_2_fp32_ln(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
"VLMs need lots of steps to prepare images/mask correctly to get pad-free inputs. Can be tested as part of LLM test"
|
|
)
|
|
def test_flash_attention_2_padding_matches_padding_free_with_position_ids(self):
|
|
pass
|
|
|
|
# TODO (joao, raushan): fix me -- the problem is in `cache_position[0] == 0`, i.e. dynamic control flow
|
|
@unittest.skip("PaliGemma is not compatible with end-to-end generation compilation")
|
|
def test_generate_compile_fullgraph(self):
|
|
pass
|
|
|
|
|
|
@slow
|
|
@require_torch
|
|
@require_read_token
|
|
class PaliGemmaForConditionalGenerationIntegrationTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-pt-224")
|
|
|
|
def tearDown(self):
|
|
cleanup(torch_device, gc_collect=True)
|
|
|
|
def test_small_model_integration_test(self):
|
|
# Let' s make sure we test the preprocessing to replace what is used
|
|
model_id = "google/paligemma-3b-pt-224"
|
|
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
|
|
prompt = ""
|
|
image_file = (
|
|
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
|
|
)
|
|
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
|
inputs = self.processor(images=raw_image, text=prompt, return_tensors="pt")
|
|
EXPECTED_INPUT_IDS = torch.tensor([[257152] * 256 + [2, 108]])
|
|
self.assertTrue(torch.equal(inputs["input_ids"], EXPECTED_INPUT_IDS))
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20)
|
|
EXPECTED_DECODED_TEXT = "\ncow on the beach" # fmt: skip
|
|
|
|
self.assertEqual(
|
|
self.processor.decode(output[0], skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
def test_small_model_integration_test_multiimage(self):
|
|
model_id = "google/paligemma-3b-ft-nlvr2-448" # checkpoint tuned for multiple images
|
|
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
|
|
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
|
prompt = "answer en There is no snowman in any of the images. Is this true or false?"
|
|
stop_sign_image = Image.open(
|
|
requests.get("https://www.ilankelman.org/stopsigns/australia.jpg", stream=True).raw
|
|
)
|
|
snow_image = Image.open(
|
|
requests.get(
|
|
"https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg", stream=True
|
|
).raw
|
|
)
|
|
|
|
inputs = processor(text=prompt, images=[[snow_image, snow_image]], return_tensors="pt")
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20)
|
|
EXPECTED_DECODED_TEXT = "answer en There is no snowman in any of the images. Is this true or false?\nFalse"
|
|
|
|
self.assertEqual(
|
|
self.processor.decode(output[0], skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
# try another prompt with two different image this time
|
|
prompt = "answer en There is exactly one snowman. Is this true or false?"
|
|
inputs = processor(text=prompt, images=[[snow_image, stop_sign_image]], return_tensors="pt")
|
|
output = model.generate(**inputs, max_new_tokens=20)
|
|
EXPECTED_DECODED_TEXT = "answer en There is exactly one snowman. Is this true or false?\nTrue"
|
|
self.assertEqual(
|
|
self.processor.decode(output[0], skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
def test_small_model_integration_test_paligemma_VQA(self):
|
|
# Let' s make sure we test the preprocessing to replace what is used
|
|
model_id = "google/paligemma-3b-pt-224"
|
|
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
|
|
prompt = "answer en Where is the cow standing?"
|
|
image_file = (
|
|
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
|
|
)
|
|
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
|
inputs = self.processor(images=raw_image, text=prompt, return_tensors="pt").to(torch.float16)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=900, do_sample=False)
|
|
EXPECTED_DECODED_TEXT = "answer en Where is the cow standing?\nbeach" # fmt: skip
|
|
|
|
self.assertEqual(
|
|
self.processor.decode(output[0], skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
def test_small_model_integration_test_paligemma_empty_prompt(self):
|
|
# Let' s make sure we test the preprocessing to replace what is used
|
|
model_id = "google/paligemma-3b-pt-224"
|
|
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
|
|
|
|
prompt = ""
|
|
image_file = (
|
|
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
|
|
)
|
|
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
|
inputs = self.processor(images=raw_image, text=prompt, return_tensors="pt").to(torch.float16)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=900, do_sample=False)
|
|
EXPECTED_DECODED_TEXT = "\ncow on the beach" # fmt: skip
|
|
|
|
self.assertEqual(
|
|
self.processor.decode(output[0], skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
def test_small_model_integration_test_paligemma_batched(self):
|
|
# Let' s make sure we test the preprocessing to replace what is used
|
|
model_id = "google/paligemma-3b-pt-224"
|
|
|
|
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
|
|
|
|
prompts = [
|
|
"answer en Where is the cow standing?",
|
|
"",
|
|
]
|
|
image1 = Image.open(
|
|
requests.get(
|
|
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
|
|
stream=True,
|
|
).raw
|
|
)
|
|
image2 = image1
|
|
|
|
inputs = self.processor(images=[image1, image2], text=prompts, return_tensors="pt", padding=True)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20)
|
|
|
|
EXPECTED_DECODED_TEXT = ["answer en Where is the cow standing?\nbeach", "\ncow on the beach"] # fmt: skip
|
|
|
|
self.assertEqual(self.processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT)
|
|
|
|
def test_small_model_integration_test_paligemma_batched_bf16(self):
|
|
# Let' s make sure we test the preprocessing to replace what is used
|
|
model_id = "google/paligemma-3b-pt-224"
|
|
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
|
model_id, revision="bfloat16", torch_dtype=torch.bfloat16
|
|
).to(torch_device)
|
|
# The first batch is longer in terms of text, the second will be padded.
|
|
prompts = [
|
|
"answer en Where is the cow standing?",
|
|
"",
|
|
]
|
|
image1 = Image.open(
|
|
requests.get(
|
|
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
|
|
stream=True,
|
|
).raw
|
|
)
|
|
image2 = image1
|
|
|
|
inputs = (
|
|
self.processor(images=[image1, image2], text=prompts, return_tensors="pt", padding=True)
|
|
.to(torch.bfloat16)
|
|
.to(torch_device)
|
|
)
|
|
output = model.generate(**inputs, max_new_tokens=20)
|
|
|
|
EXPECTED_DECODED_TEXT = ["answer en Where is the cow standing?\nbeach", "\ncow on the beach"] # fmt: skip
|
|
self.assertEqual(self.processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT)
|
|
|
|
def test_small_model_integration_test_paligemma_batched_f16(self):
|
|
# Let' s make sure we test the preprocessing to replace what is used
|
|
model_id = "google/paligemma-3b-pt-224"
|
|
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
|
model_id, revision="float16", torch_dtype=torch.float16
|
|
).to(torch_device)
|
|
# The first batch is longer in terms of text, the second will be padded.
|
|
prompts = [
|
|
"answer en Where is the cow standing?",
|
|
"",
|
|
]
|
|
image1 = Image.open(
|
|
requests.get(
|
|
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
|
|
stream=True,
|
|
).raw
|
|
)
|
|
image2 = image1
|
|
|
|
inputs = (
|
|
self.processor(images=[image1, image2], text=prompts, return_tensors="pt", padding=True)
|
|
.to(torch.float16)
|
|
.to(torch_device)
|
|
)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20)
|
|
|
|
EXPECTED_DECODED_TEXT = ["answer en Where is the cow standing?\nbeach", "\ncow on the beach"] # fmt: skip
|
|
self.assertEqual(self.processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT)
|
|
|
|
def test_integration_detection_bug(self):
|
|
# this is a reproducer of https://github.com/huggingface/transformers/issues/31425 where not enough context
|
|
# impacted negatively segmentation generations.
|
|
model_id = "google/paligemma-3b-pt-224"
|
|
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
|
model_id, revision="bfloat16", torch_dtype=torch.bfloat16
|
|
).to(torch_device)
|
|
prompt = ("detect shoe",)
|
|
|
|
image = Image.open(
|
|
requests.get(
|
|
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/shoe.png",
|
|
stream=True,
|
|
).raw
|
|
)
|
|
|
|
inputs = self.processor(images=image, text=prompt, return_tensors="pt").to(torch.bfloat16).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20)
|
|
|
|
EXPECTED_DECODED_TEXT = "detect shoe\n<loc0051><loc0309><loc0708><loc0646> shoe" # fmt: skip
|
|
self.assertEqual(self.processor.decode(output[0], skip_special_tokens=True), EXPECTED_DECODED_TEXT)
|
|
|
|
def test_paligemma_index_error_bug(self):
|
|
# This is a reproducer of https://github.com/huggingface/transformers/pull/28032 and makes sure it does not happen anymore
|
|
# Please refer to that PR, or specifically https://github.com/huggingface/transformers/pull/28032#issuecomment-1860650043 for
|
|
# more details
|
|
model_id = "google/paligemma-3b-pt-224"
|
|
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
|
|
|
|
# Simulate a super long prompt
|
|
prompt = "\n" * 200
|
|
image_file = (
|
|
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
|
|
)
|
|
|
|
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
|
inputs = self.processor(
|
|
images=raw_image,
|
|
text=prompt,
|
|
return_tensors="pt",
|
|
).to(torch.float16)
|
|
|
|
# Make sure that `generate` works
|
|
_ = model.generate(**inputs, max_new_tokens=20)
|
|
|
|
def test_paligemma_finetuning_with_suffixes_bf16(self):
|
|
# this is a supplementary test to ensure paligemma fine-tuning that relies on token_type_ids is robust to future changes
|
|
model_id = "google/paligemma-3b-pt-224"
|
|
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
|
model_id, revision="bfloat16", torch_dtype=torch.bfloat16
|
|
).to(torch_device)
|
|
# The first batch is longer in terms of text, the second will be padded.
|
|
prompts = [
|
|
"answer en Where is the cow standing?",
|
|
"",
|
|
]
|
|
|
|
suffixes = ["beach", "cow standing on the beach"]
|
|
image1 = Image.open(
|
|
requests.get(
|
|
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
|
|
stream=True,
|
|
).raw
|
|
)
|
|
image2 = image1
|
|
|
|
inputs = (
|
|
self.processor(images=[image1, image2], text=prompts, suffix=suffixes, return_tensors="pt", padding=True)
|
|
.to(torch.bfloat16)
|
|
.to(torch_device)
|
|
)
|
|
|
|
expected_labels = torch.tensor(
|
|
[266 * [-100] + [54901, 1], 262 * [-100] + [14706, 9980, 611, 573, 8318, 1]]
|
|
).to(torch_device)
|
|
|
|
assert torch.equal(inputs["labels"], expected_labels)
|
|
|
|
expected_token_type_ids = torch.tensor([266 * [0] + 2 * [1], 262 * [0] + 6 * [1]]).to(torch_device)
|
|
|
|
assert torch.equal(inputs["token_type_ids"], expected_token_type_ids)
|
|
|
|
output = model(**inputs)
|
|
|
|
# check that loss does not error out
|
|
_ = output.loss
|