mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-13 17:48:22 +06:00
188 lines
5.4 KiB
Python
Executable File
188 lines
5.4 KiB
Python
Executable File
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, HqqConfig
|
|
from transformers.testing_utils import (
|
|
require_accelerate,
|
|
require_hqq,
|
|
require_torch_gpu,
|
|
require_torch_multi_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import is_hqq_available, is_torch_available
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_hqq_available():
|
|
from hqq.core.quantize import HQQBackend, HQQLinear
|
|
|
|
|
|
class HQQLLMRunner:
|
|
def __init__(self, model_id, quant_config, compute_dtype, device, cache_dir=None):
|
|
self.model = AutoModelForCausalLM.from_pretrained(
|
|
model_id,
|
|
torch_dtype=compute_dtype,
|
|
device_map=device,
|
|
quantization_config=quant_config,
|
|
low_cpu_mem_usage=True,
|
|
cache_dir=cache_dir,
|
|
)
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir=cache_dir)
|
|
self.device = self.model.device
|
|
HQQLinear.set_backend(HQQBackend.PYTORCH)
|
|
|
|
|
|
def cleanup():
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
|
|
def check_hqqlayer(test_module, hqq_layer, batch_size=1, context_size=1024):
|
|
# Test HQQ layer
|
|
W_dequant = hqq_layer.dequantize() # Reconstructed weights
|
|
inputs = (
|
|
torch.randn(
|
|
(batch_size, context_size, hqq_layer.meta["shape"][1]),
|
|
device=hqq_layer.device,
|
|
dtype=hqq_layer.compute_dtype,
|
|
)
|
|
/ 10.0
|
|
)
|
|
with torch.no_grad():
|
|
outputs = hqq_layer(inputs)
|
|
test_module.assertEqual(outputs.shape[-1], W_dequant.shape[0])
|
|
test_module.assertEqual(outputs.dtype, hqq_layer.compute_dtype)
|
|
del W_dequant, inputs, outputs
|
|
cleanup()
|
|
|
|
|
|
def check_forward(test_module, model, batch_size=1, context_size=1024):
|
|
# Test forward pass
|
|
with torch.no_grad():
|
|
out = model(torch.zeros([batch_size, context_size], device=model.device, dtype=torch.int32)).logits
|
|
test_module.assertEqual(out.shape[0], batch_size)
|
|
test_module.assertEqual(out.shape[1], context_size)
|
|
cleanup()
|
|
|
|
|
|
MODEL_ID = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
|
|
|
|
|
@require_torch_gpu
|
|
@require_hqq
|
|
class HqqConfigTest(unittest.TestCase):
|
|
def test_to_dict(self):
|
|
"""
|
|
Makes sure the config format is properly set
|
|
"""
|
|
quantization_config = HqqConfig()
|
|
hqq_orig_config = quantization_config.to_dict()
|
|
|
|
self.assertEqual(quantization_config.quant_config, hqq_orig_config["quant_config"])
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
@require_accelerate
|
|
@require_hqq
|
|
class HQQTest(unittest.TestCase):
|
|
def tearDown(self):
|
|
cleanup()
|
|
|
|
def test_fp16_quantized_model(self):
|
|
"""
|
|
Simple LLM model testing fp16
|
|
"""
|
|
quant_config = HqqConfig(nbits=8, group_size=64)
|
|
|
|
hqq_runner = HQQLLMRunner(
|
|
model_id=MODEL_ID, quant_config=quant_config, compute_dtype=torch.float16, device=torch_device
|
|
)
|
|
|
|
check_hqqlayer(self, hqq_runner.model.model.layers[0].self_attn.v_proj)
|
|
check_forward(self, hqq_runner.model)
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
@require_torch_multi_gpu
|
|
@require_accelerate
|
|
@require_hqq
|
|
class HQQTestMultiGPU(unittest.TestCase):
|
|
def tearDown(self):
|
|
cleanup()
|
|
|
|
def test_fp16_quantized_model_multipgpu(self):
|
|
"""
|
|
Simple LLM model testing fp16 with multi-gpu
|
|
"""
|
|
|
|
quant_config = HqqConfig(nbits=8, group_size=64)
|
|
|
|
hqq_runner = HQQLLMRunner(
|
|
model_id=MODEL_ID, quant_config=quant_config, compute_dtype=torch.float16, device="auto"
|
|
)
|
|
|
|
check_hqqlayer(self, hqq_runner.model.model.layers[0].self_attn.v_proj)
|
|
check_forward(self, hqq_runner.model)
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
@require_accelerate
|
|
@require_hqq
|
|
class HQQSerializationTest(unittest.TestCase):
|
|
def tearDown(self):
|
|
cleanup()
|
|
|
|
def test_model_serialization(self):
|
|
"""
|
|
Simple HQQ LLM save/load test
|
|
"""
|
|
quant_config = HqqConfig(nbits=4, group_size=64)
|
|
|
|
hqq_runner = HQQLLMRunner(
|
|
model_id=MODEL_ID, quant_config=quant_config, compute_dtype=torch.float16, device=torch_device
|
|
)
|
|
|
|
input_tensor = torch.zeros((1, 8), dtype=torch.int32, device=torch_device)
|
|
|
|
with torch.no_grad():
|
|
logits_ref = hqq_runner.model.forward(input_tensor).logits
|
|
|
|
# Save
|
|
saved_model_id = "quant_model"
|
|
hqq_runner.model.save_pretrained(saved_model_id)
|
|
|
|
# Remove old model
|
|
del hqq_runner.model
|
|
torch.cuda.empty_cache()
|
|
|
|
# Load and check if the logits match
|
|
model_loaded = AutoModelForCausalLM.from_pretrained(
|
|
"quant_model", torch_dtype=torch.float16, device_map=torch_device, low_cpu_mem_usage=True
|
|
)
|
|
|
|
with torch.no_grad():
|
|
logits_loaded = model_loaded.forward(input_tensor).logits
|
|
|
|
self.assertEqual((logits_loaded - logits_ref).abs().mean().item(), 0)
|