transformers/docs/source/model_doc/xlm.rst
Sylvain Gugger 3323146e90
Models doc (#7345)
* Clean up model documentation

* Formatting

* Preparation work

* Long lines

* Main work on rst files

* Cleanup all config files

* Syntax fix

* Clean all tokenizers

* Work on first models

* Models beginning

* FaluBERT

* All PyTorch models

* All models

* Long lines again

* Fixes

* More fixes

* Update docs/source/model_doc/bert.rst

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update docs/source/model_doc/electra.rst

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Last fixes

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2020-09-23 13:20:45 -04:00

147 lines
5.7 KiB
ReStructuredText

XLM
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The XLM model was proposed in `Cross-lingual Language Model Pretraining <https://arxiv.org/abs/1901.07291>`__ by
Guillaume Lample, Alexis Conneau. It's a transformer pretrained using one of the following objectives:
- a causal language modeling (CLM) objective (next token prediction),
- a masked language modeling (MLM) objective (BERT-like), or
- a Translation Language Modeling (TLM) object (extension of BERT's MLM to multiple language inputs)
The abstract from the paper is the following:
*Recent studies have demonstrated the efficiency of generative pretraining for English natural language understanding.
In this work, we extend this approach to multiple languages and show the effectiveness of cross-lingual pretraining.
We propose two methods to learn cross-lingual language models (XLMs): one unsupervised that only relies on monolingual
data, and one supervised that leverages parallel data with a new cross-lingual language model objective. We obtain
state-of-the-art results on cross-lingual classification, unsupervised and supervised machine translation. On XNLI,
our approach pushes the state of the art by an absolute gain of 4.9% accuracy. On unsupervised machine translation,
we obtain 34.3 BLEU on WMT'16 German-English, improving the previous state of the art by more than 9 BLEU. On
supervised machine translation, we obtain a new state of the art of 38.5 BLEU on WMT'16 Romanian-English, outperforming
the previous best approach by more than 4 BLEU. Our code and pretrained models will be made publicly available.*
Tips:
- XLM has many different checkpoints, which were trained using different objectives: CLM, MLM or TLM. Make sure to
select the correct objective for your task (e.g. MLM checkpoints are not suitable for generation).
- XLM has multilingual checkpoints which leverage a specific :obj:`lang` parameter. Check out the
:doc:`multi-lingual <../multilingual>` page for more information.
The original code can be found `here <https://github.com/facebookresearch/XLM/>`__.
XLMConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMConfig
:members:
XLMTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMTokenizer
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
create_token_type_ids_from_sequences, save_vocabulary
XLM specific outputs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_xlm.XLMForQuestionAnsweringOutput
:members:
XLMModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMModel
:members: forward
XLMWithLMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMWithLMHeadModel
:members: forward
XLMForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMForSequenceClassification
:members: forward
XLMForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMForMultipleChoice
:members: forward
XLMForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMForTokenClassification
:members: forward
XLMForQuestionAnsweringSimple
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMForQuestionAnsweringSimple
:members: forward
XLMForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLMForQuestionAnswering
:members: forward
TFXLMModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLMModel
:members: call
TFXLMWithLMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLMWithLMHeadModel
:members: call
TFXLMForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLMForSequenceClassification
:members: call
TFXLMForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLMForMultipleChoice
:members: call
TFXLMForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLMForTokenClassification
:members: call
TFXLMForQuestionAnsweringSimple
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLMForQuestionAnsweringSimple
:members: call