mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-06 14:20:04 +06:00

* Configuration * Modeling * Tokenization * Obliterate the trailing spaces * From underlines to long underlines
104 lines
4.7 KiB
ReStructuredText
104 lines
4.7 KiB
ReStructuredText
SqueezeBERT
|
|
-----------------------------------------------------------------------------------------------------------------------
|
|
|
|
Overview
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
The SqueezeBERT model was proposed in
|
|
`SqueezeBERT: What can computer vision teach NLP about efficient neural networks?
|
|
<https://arxiv.org/abs/2006.11316>`__
|
|
by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, Kurt W. Keutzer.
|
|
It's a bidirectional transformer similar to the BERT model.
|
|
The key difference between the BERT architecture and the SqueezeBERT architecture
|
|
is that SqueezeBERT uses `grouped convolutions <https://blog.yani.io/filter-group-tutorial>`__
|
|
instead of fully-connected layers for the Q, K, V and FFN layers.
|
|
|
|
The abstract from the paper is the following:
|
|
|
|
*Humans read and write hundreds of billions of messages every day. Further, due to the availability of
|
|
large datasets, large computing systems, and better neural network models, natural language processing (NLP)
|
|
technology has made significant strides in understanding, proofreading, and organizing these messages.
|
|
Thus, there is a significant opportunity to deploy NLP in myriad applications to help web users,
|
|
social networks, and businesses. In particular, we consider smartphones and other mobile devices as
|
|
crucial platforms for deploying NLP models at scale. However, today's highly-accurate NLP neural network
|
|
models such as BERT and RoBERTa are extremely computationally expensive, with BERT-base taking 1.7 seconds
|
|
to classify a text snippet on a Pixel 3 smartphone. In this work, we observe that methods such as grouped
|
|
convolutions have yielded significant speedups for computer vision networks, but many of these techniques
|
|
have not been adopted by NLP neural network designers. We demonstrate how to replace several operations in
|
|
self-attention layers with grouped convolutions, and we use this technique in a novel network architecture
|
|
called SqueezeBERT, which runs 4.3x faster than BERT-base on the Pixel 3 while achieving competitive
|
|
accuracy on the GLUE test set. The SqueezeBERT code will be released.*
|
|
|
|
Tips:
|
|
|
|
- SqueezeBERT is a model with absolute position embeddings so it's usually advised to pad the inputs on
|
|
the right rather than the left.
|
|
- SqueezeBERT is similar to BERT and therefore relies on the masked language modeling (MLM) objective.
|
|
It is therefore efficient at predicting masked tokens and at NLU in general, but is not optimal for
|
|
text generation. Models trained with a causal language modeling (CLM) objective are better in that regard.
|
|
- For best results when finetuning on sequence classification tasks, it is recommended to start with the
|
|
`squeezebert/squeezebert-mnli-headless` checkpoint.
|
|
|
|
SqueezeBertConfig
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.SqueezeBertConfig
|
|
:members:
|
|
|
|
|
|
SqueezeBertTokenizer
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.SqueezeBertTokenizer
|
|
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
|
|
create_token_type_ids_from_sequences, save_vocabulary
|
|
|
|
|
|
SqueezeBertTokenizerFast
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.SqueezeBertTokenizerFast
|
|
:members:
|
|
|
|
|
|
SqueezeBertModel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.SqueezeBertModel
|
|
:members:
|
|
|
|
|
|
SqueezeBertForMaskedLM
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.SqueezeBertForMaskedLM
|
|
:members:
|
|
|
|
|
|
SqueezeBertForSequenceClassification
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.SqueezeBertForSequenceClassification
|
|
:members:
|
|
|
|
|
|
SqueezeBertForMultipleChoice
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.SqueezeBertForMultipleChoice
|
|
:members:
|
|
|
|
|
|
SqueezeBertForTokenClassification
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.SqueezeBertForTokenClassification
|
|
:members:
|
|
|
|
|
|
SqueezeBertForQuestionAnswering
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.SqueezeBertForQuestionAnswering
|
|
:members:
|