transformers/docs/source/model_doc/distilbert.rst
Sylvain Gugger 3323146e90
Models doc (#7345)
* Clean up model documentation

* Formatting

* Preparation work

* Long lines

* Main work on rst files

* Cleanup all config files

* Syntax fix

* Clean all tokenizers

* Work on first models

* Models beginning

* FaluBERT

* All PyTorch models

* All models

* Long lines again

* Fixes

* More fixes

* Update docs/source/model_doc/bert.rst

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update docs/source/model_doc/electra.rst

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Last fixes

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2020-09-23 13:20:45 -04:00

143 lines
5.8 KiB
ReStructuredText

DistilBERT
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The DistilBERT model was proposed in the blog post
`Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled version of BERT
<https://medium.com/huggingface/distilbert-8cf3380435b5>`__, and the paper `DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter <https://arxiv.org/abs/1910.01108>`__.
DistilBERT is a small, fast, cheap and light Transformer model trained by distilling BERT base. It has 40% less
parameters than `bert-base-uncased`, runs 60% faster while preserving over 95% of BERT's performances as measured on
the GLUE language understanding benchmark.
The abstract from the paper is the following:
*As Transfer Learning from large-scale pre-trained models becomes more prevalent in Natural Language Processing (NLP),
operating these large models in on-the-edge and/or under constrained computational training or inference budgets
remains challenging. In this work, we propose a method to pre-train a smaller general-purpose language representation
model, called DistilBERT, which can then be fine-tuned with good performances on a wide range of tasks like its larger
counterparts. While most prior work investigated the use of distillation for building task-specific models, we
leverage knowledge distillation during the pre-training phase and show that it is possible to reduce the size of a
BERT model by 40%, while retaining 97% of its language understanding capabilities and being 60% faster. To leverage
the inductive biases learned by larger models during pre-training, we introduce a triple loss combining language
modeling, distillation and cosine-distance losses. Our smaller, faster and lighter model is cheaper to pre-train
and we demonstrate its capabilities for on-device computations in a proof-of-concept experiment and a comparative
on-device study.*
Tips:
- DistilBERT doesn't have :obj:`token_type_ids`, you don't need to indicate which token belongs to which segment. Just
separate your segments with the separation token :obj:`tokenizer.sep_token` (or :obj:`[SEP]`).
- DistilBERT doesn't have options to select the input positions (:obj:`position_ids` input). This could be added if
necessary though, just let us know if you need this option.
The original code can be found `here <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__.
DistilBertConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertConfig
:members:
DistilBertTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertTokenizer
:members:
DistilBertTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertTokenizerFast
:members:
DistilBertModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertModel
:members: forward
DistilBertForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertForMaskedLM
:members: forward
DistilBertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertForSequenceClassification
:members: forward
DistilBertForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertForMultipleChoice
:members: forward
DistilBertForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertForTokenClassification
:members: forward
DistilBertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertForQuestionAnswering
:members: forward
TFDistilBertModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFDistilBertModel
:members: call
TFDistilBertForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFDistilBertForMaskedLM
:members: call
TFDistilBertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFDistilBertForSequenceClassification
:members: call
TFDistilBertForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFDistilBertForMultipleChoice
:members: call
TFDistilBertForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFDistilBertForTokenClassification
:members: call
TFDistilBertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFDistilBertForQuestionAnswering
:members: call