mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* Update pipeline word heuristic to work with whitespace in token offsets This change checks for whitespace in the input string at either the character preceding the token or in the first character of the token. This works with tokenizers that return offsets excluding whitespace between words or with offsets including whitespace. fixes #18111 starting * Use smaller model, ensure expected tokenization * Re-run CI (please squash)
825 lines
34 KiB
Python
825 lines
34 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import (
|
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
|
|
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
|
|
AutoModelForTokenClassification,
|
|
AutoTokenizer,
|
|
TokenClassificationPipeline,
|
|
pipeline,
|
|
)
|
|
from transformers.pipelines import AggregationStrategy, TokenClassificationArgumentHandler
|
|
from transformers.testing_utils import (
|
|
is_pipeline_test,
|
|
nested_simplify,
|
|
require_tf,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
slow,
|
|
)
|
|
|
|
from .test_pipelines_common import ANY, PipelineTestCaseMeta
|
|
|
|
|
|
VALID_INPUTS = ["A simple string", ["list of strings", "A simple string that is quite a bit longer"]]
|
|
|
|
|
|
@is_pipeline_test
|
|
class TokenClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
|
|
model_mapping = MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
|
|
tf_model_mapping = TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
|
|
|
|
def get_test_pipeline(self, model, tokenizer, feature_extractor):
|
|
token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer)
|
|
return token_classifier, ["A simple string", "A simple string that is quite a bit longer"]
|
|
|
|
def run_pipeline_test(self, token_classifier, _):
|
|
model = token_classifier.model
|
|
tokenizer = token_classifier.tokenizer
|
|
|
|
outputs = token_classifier("A simple string")
|
|
self.assertIsInstance(outputs, list)
|
|
n = len(outputs)
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{
|
|
"entity": ANY(str),
|
|
"score": ANY(float),
|
|
"start": ANY(int),
|
|
"end": ANY(int),
|
|
"index": ANY(int),
|
|
"word": ANY(str),
|
|
}
|
|
for i in range(n)
|
|
],
|
|
)
|
|
outputs = token_classifier(["list of strings", "A simple string that is quite a bit longer"])
|
|
self.assertIsInstance(outputs, list)
|
|
self.assertEqual(len(outputs), 2)
|
|
n = len(outputs[0])
|
|
m = len(outputs[1])
|
|
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
[
|
|
{
|
|
"entity": ANY(str),
|
|
"score": ANY(float),
|
|
"start": ANY(int),
|
|
"end": ANY(int),
|
|
"index": ANY(int),
|
|
"word": ANY(str),
|
|
}
|
|
for i in range(n)
|
|
],
|
|
[
|
|
{
|
|
"entity": ANY(str),
|
|
"score": ANY(float),
|
|
"start": ANY(int),
|
|
"end": ANY(int),
|
|
"index": ANY(int),
|
|
"word": ANY(str),
|
|
}
|
|
for i in range(m)
|
|
],
|
|
],
|
|
)
|
|
|
|
self.run_aggregation_strategy(model, tokenizer)
|
|
|
|
def run_aggregation_strategy(self, model, tokenizer):
|
|
token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE)
|
|
outputs = token_classifier("A simple string")
|
|
self.assertIsInstance(outputs, list)
|
|
n = len(outputs)
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{
|
|
"entity_group": ANY(str),
|
|
"score": ANY(float),
|
|
"start": ANY(int),
|
|
"end": ANY(int),
|
|
"word": ANY(str),
|
|
}
|
|
for i in range(n)
|
|
],
|
|
)
|
|
|
|
token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="first")
|
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST)
|
|
outputs = token_classifier("A simple string")
|
|
self.assertIsInstance(outputs, list)
|
|
n = len(outputs)
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{
|
|
"entity_group": ANY(str),
|
|
"score": ANY(float),
|
|
"start": ANY(int),
|
|
"end": ANY(int),
|
|
"word": ANY(str),
|
|
}
|
|
for i in range(n)
|
|
],
|
|
)
|
|
|
|
token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="max")
|
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.MAX)
|
|
outputs = token_classifier("A simple string")
|
|
self.assertIsInstance(outputs, list)
|
|
n = len(outputs)
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{
|
|
"entity_group": ANY(str),
|
|
"score": ANY(float),
|
|
"start": ANY(int),
|
|
"end": ANY(int),
|
|
"word": ANY(str),
|
|
}
|
|
for i in range(n)
|
|
],
|
|
)
|
|
|
|
token_classifier = TokenClassificationPipeline(
|
|
model=model, tokenizer=tokenizer, aggregation_strategy="average"
|
|
)
|
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.AVERAGE)
|
|
outputs = token_classifier("A simple string")
|
|
self.assertIsInstance(outputs, list)
|
|
n = len(outputs)
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{
|
|
"entity_group": ANY(str),
|
|
"score": ANY(float),
|
|
"start": ANY(int),
|
|
"end": ANY(int),
|
|
"word": ANY(str),
|
|
}
|
|
for i in range(n)
|
|
],
|
|
)
|
|
|
|
with self.assertWarns(UserWarning):
|
|
token_classifier = pipeline(task="ner", model=model, tokenizer=tokenizer, grouped_entities=True)
|
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE)
|
|
with self.assertWarns(UserWarning):
|
|
token_classifier = pipeline(
|
|
task="ner", model=model, tokenizer=tokenizer, grouped_entities=True, ignore_subwords=True
|
|
)
|
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST)
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_spanish_bert(self):
|
|
# https://github.com/huggingface/transformers/pull/4987
|
|
NER_MODEL = "mrm8488/bert-spanish-cased-finetuned-ner"
|
|
model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
|
|
tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
|
|
sentence = """Consuelo Araújo Noguera, ministra de cultura del presidente Andrés Pastrana (1998.2002) fue asesinada por las Farc luego de haber permanecido secuestrada por algunos meses."""
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer)
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output[:3]),
|
|
[
|
|
{"entity": "B-PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4, "index": 1},
|
|
{"entity": "B-PER", "score": 0.803, "word": "##uelo", "start": 4, "end": 8, "index": 2},
|
|
{"entity": "I-PER", "score": 0.999, "word": "Ara", "start": 9, "end": 12, "index": 3},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output[:3]),
|
|
[
|
|
{"entity_group": "PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4},
|
|
{"entity_group": "PER", "score": 0.966, "word": "##uelo Araújo Noguera", "start": 4, "end": 23},
|
|
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first")
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output[:3]),
|
|
[
|
|
{"entity_group": "PER", "score": 0.999, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23},
|
|
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output[:3]),
|
|
[
|
|
{"entity_group": "PER", "score": 0.999, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23},
|
|
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output[:3]),
|
|
[
|
|
{"entity_group": "PER", "score": 0.966, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23},
|
|
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75},
|
|
{"entity_group": "ORG", "score": 0.542, "word": "Farc", "start": 110, "end": 114},
|
|
],
|
|
)
|
|
|
|
@require_torch_gpu
|
|
@slow
|
|
def test_gpu(self):
|
|
sentence = "This is dummy sentence"
|
|
ner = pipeline(
|
|
"token-classification",
|
|
device=0,
|
|
aggregation_strategy=AggregationStrategy.SIMPLE,
|
|
)
|
|
|
|
output = ner(sentence)
|
|
self.assertEqual(nested_simplify(output), [])
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_dbmdz_english(self):
|
|
# Other sentence
|
|
NER_MODEL = "dbmdz/bert-large-cased-finetuned-conll03-english"
|
|
model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
|
|
tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
|
|
sentence = """Enzo works at the UN"""
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer)
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
[
|
|
{"entity": "I-PER", "score": 0.997, "word": "En", "start": 0, "end": 2, "index": 1},
|
|
{"entity": "I-PER", "score": 0.996, "word": "##zo", "start": 2, "end": 4, "index": 2},
|
|
{"entity": "I-ORG", "score": 0.999, "word": "UN", "start": 22, "end": 24, "index": 7},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
[
|
|
{"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 22, "end": 24},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first")
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output[:3]),
|
|
[
|
|
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 22, "end": 24},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output[:3]),
|
|
[
|
|
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 22, "end": 24},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
[
|
|
{"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 22, "end": 24},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_aggregation_strategy_byte_level_tokenizer(self):
|
|
sentence = "Groenlinks praat over Schiphol."
|
|
ner = pipeline("ner", model="xlm-roberta-large-finetuned-conll02-dutch", aggregation_strategy="max")
|
|
self.assertEqual(
|
|
nested_simplify(ner(sentence)),
|
|
[
|
|
{"end": 10, "entity_group": "ORG", "score": 0.994, "start": 0, "word": "Groenlinks"},
|
|
{"entity_group": "LOC", "score": 1.0, "word": "Schiphol.", "start": 22, "end": 31},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_aggregation_strategy_no_b_i_prefix(self):
|
|
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
|
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
|
|
# Just to understand scores indexes in this test
|
|
token_classifier.model.config.id2label = {0: "O", 1: "MISC", 2: "PER", 3: "ORG", 4: "LOC"}
|
|
example = [
|
|
{
|
|
# fmt : off
|
|
"scores": np.array([0, 0, 0, 0, 0.9968166351318359]),
|
|
"index": 1,
|
|
"is_subword": False,
|
|
"word": "En",
|
|
"start": 0,
|
|
"end": 2,
|
|
},
|
|
{
|
|
# fmt : off
|
|
"scores": np.array([0, 0, 0, 0, 0.9957635998725891]),
|
|
"index": 2,
|
|
"is_subword": True,
|
|
"word": "##zo",
|
|
"start": 2,
|
|
"end": 4,
|
|
},
|
|
{
|
|
# fmt: off
|
|
"scores": np.array([0, 0, 0, 0.9986497163772583, 0]),
|
|
# fmt: on
|
|
"index": 7,
|
|
"word": "UN",
|
|
"is_subword": False,
|
|
"start": 11,
|
|
"end": 13,
|
|
},
|
|
]
|
|
self.assertEqual(
|
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)),
|
|
[
|
|
{"end": 2, "entity": "LOC", "score": 0.997, "start": 0, "word": "En", "index": 1},
|
|
{"end": 4, "entity": "LOC", "score": 0.996, "start": 2, "word": "##zo", "index": 2},
|
|
{"end": 13, "entity": "ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7},
|
|
],
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)),
|
|
[
|
|
{"entity_group": "LOC", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_aggregation_strategy(self):
|
|
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
|
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
|
|
# Just to understand scores indexes in this test
|
|
self.assertEqual(
|
|
token_classifier.model.config.id2label,
|
|
{0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"},
|
|
)
|
|
example = [
|
|
{
|
|
# fmt : off
|
|
"scores": np.array([0, 0, 0, 0, 0.9968166351318359, 0, 0, 0]),
|
|
"index": 1,
|
|
"is_subword": False,
|
|
"word": "En",
|
|
"start": 0,
|
|
"end": 2,
|
|
},
|
|
{
|
|
# fmt : off
|
|
"scores": np.array([0, 0, 0, 0, 0.9957635998725891, 0, 0, 0]),
|
|
"index": 2,
|
|
"is_subword": True,
|
|
"word": "##zo",
|
|
"start": 2,
|
|
"end": 4,
|
|
},
|
|
{
|
|
# fmt: off
|
|
"scores": np.array([0, 0, 0, 0, 0, 0.9986497163772583, 0, 0, ]),
|
|
# fmt: on
|
|
"index": 7,
|
|
"word": "UN",
|
|
"is_subword": False,
|
|
"start": 11,
|
|
"end": 13,
|
|
},
|
|
]
|
|
self.assertEqual(
|
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)),
|
|
[
|
|
{"end": 2, "entity": "I-PER", "score": 0.997, "start": 0, "word": "En", "index": 1},
|
|
{"end": 4, "entity": "I-PER", "score": 0.996, "start": 2, "word": "##zo", "index": 2},
|
|
{"end": 13, "entity": "B-ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7},
|
|
],
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)),
|
|
[
|
|
{"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
|
|
],
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.FIRST)),
|
|
[
|
|
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
|
|
],
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.MAX)),
|
|
[
|
|
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
|
|
],
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)),
|
|
[
|
|
{"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_aggregation_strategy_example2(self):
|
|
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
|
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
|
|
# Just to understand scores indexes in this test
|
|
self.assertEqual(
|
|
token_classifier.model.config.id2label,
|
|
{0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"},
|
|
)
|
|
example = [
|
|
{
|
|
# Necessary for AVERAGE
|
|
"scores": np.array([0, 0.55, 0, 0.45, 0, 0, 0, 0, 0, 0]),
|
|
"is_subword": False,
|
|
"index": 1,
|
|
"word": "Ra",
|
|
"start": 0,
|
|
"end": 2,
|
|
},
|
|
{
|
|
"scores": np.array([0, 0, 0, 0.2, 0, 0, 0, 0.8, 0, 0]),
|
|
"is_subword": True,
|
|
"word": "##ma",
|
|
"start": 2,
|
|
"end": 4,
|
|
"index": 2,
|
|
},
|
|
{
|
|
# 4th score will have the higher average
|
|
# 4th score is B-PER for this model
|
|
# It's does not correspond to any of the subtokens.
|
|
"scores": np.array([0, 0, 0, 0.4, 0, 0, 0.6, 0, 0, 0]),
|
|
"is_subword": True,
|
|
"word": "##zotti",
|
|
"start": 11,
|
|
"end": 13,
|
|
"index": 3,
|
|
},
|
|
]
|
|
self.assertEqual(
|
|
token_classifier.aggregate(example, AggregationStrategy.NONE),
|
|
[
|
|
{"end": 2, "entity": "B-MISC", "score": 0.55, "start": 0, "word": "Ra", "index": 1},
|
|
{"end": 4, "entity": "B-LOC", "score": 0.8, "start": 2, "word": "##ma", "index": 2},
|
|
{"end": 13, "entity": "I-ORG", "score": 0.6, "start": 11, "word": "##zotti", "index": 3},
|
|
],
|
|
)
|
|
|
|
self.assertEqual(
|
|
token_classifier.aggregate(example, AggregationStrategy.FIRST),
|
|
[{"entity_group": "MISC", "score": 0.55, "word": "Ramazotti", "start": 0, "end": 13}],
|
|
)
|
|
self.assertEqual(
|
|
token_classifier.aggregate(example, AggregationStrategy.MAX),
|
|
[{"entity_group": "LOC", "score": 0.8, "word": "Ramazotti", "start": 0, "end": 13}],
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)),
|
|
[{"entity_group": "PER", "score": 0.35, "word": "Ramazotti", "start": 0, "end": 13}],
|
|
)
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_aggregation_strategy_offsets_with_leading_space(self):
|
|
sentence = "We're from New York"
|
|
model_name = "brandon25/deberta-base-finetuned-ner"
|
|
ner = pipeline("ner", model=model_name, ignore_labels=[], aggregation_strategy="max")
|
|
self.assertEqual(
|
|
nested_simplify(ner(sentence)),
|
|
[
|
|
{"entity_group": "O", "score": 1.0, "word": " We're from", "start": 0, "end": 10},
|
|
{"entity_group": "LOC", "score": 1.0, "word": " New York", "start": 10, "end": 19},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_gather_pre_entities(self):
|
|
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
|
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
|
|
|
|
sentence = "Hello there"
|
|
|
|
tokens = tokenizer(
|
|
sentence,
|
|
return_attention_mask=False,
|
|
return_tensors="pt",
|
|
truncation=True,
|
|
return_special_tokens_mask=True,
|
|
return_offsets_mapping=True,
|
|
)
|
|
offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0]
|
|
special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0]
|
|
input_ids = tokens["input_ids"].numpy()[0]
|
|
# First element in [CLS]
|
|
scores = np.array([[1, 0, 0], [0.1, 0.3, 0.6], [0.8, 0.1, 0.1]])
|
|
|
|
pre_entities = token_classifier.gather_pre_entities(
|
|
sentence,
|
|
input_ids,
|
|
scores,
|
|
offset_mapping,
|
|
special_tokens_mask,
|
|
aggregation_strategy=AggregationStrategy.NONE,
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(pre_entities),
|
|
[
|
|
{"word": "Hello", "scores": [0.1, 0.3, 0.6], "start": 0, "end": 5, "is_subword": False, "index": 1},
|
|
{
|
|
"word": "there",
|
|
"scores": [0.8, 0.1, 0.1],
|
|
"index": 2,
|
|
"start": 6,
|
|
"end": 11,
|
|
"is_subword": False,
|
|
},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_word_heuristic_leading_space(self):
|
|
model_name = "hf-internal-testing/tiny-random-deberta-v2"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
|
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
|
|
|
|
sentence = "I play the theremin"
|
|
|
|
tokens = tokenizer(
|
|
sentence,
|
|
return_attention_mask=False,
|
|
return_tensors="pt",
|
|
return_special_tokens_mask=True,
|
|
return_offsets_mapping=True,
|
|
)
|
|
offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0]
|
|
special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0]
|
|
input_ids = tokens["input_ids"].numpy()[0]
|
|
scores = np.array([[1, 0] for _ in input_ids]) # values irrelevant for heuristic
|
|
|
|
pre_entities = token_classifier.gather_pre_entities(
|
|
sentence,
|
|
input_ids,
|
|
scores,
|
|
offset_mapping,
|
|
special_tokens_mask,
|
|
aggregation_strategy=AggregationStrategy.FIRST,
|
|
)
|
|
|
|
# ensure expected tokenization and correct is_subword values
|
|
self.assertEqual(
|
|
[(entity["word"], entity["is_subword"]) for entity in pre_entities],
|
|
[("▁I", False), ("▁play", False), ("▁the", False), ("▁there", False), ("min", True)],
|
|
)
|
|
|
|
@require_tf
|
|
def test_tf_only(self):
|
|
model_name = "hf-internal-testing/tiny-random-bert-tf-only" # This model only has a TensorFlow version
|
|
# We test that if we don't specificy framework='tf', it gets detected automatically
|
|
token_classifier = pipeline(task="ner", model=model_name)
|
|
self.assertEqual(token_classifier.framework, "tf")
|
|
|
|
@require_tf
|
|
def test_small_model_tf(self):
|
|
model_name = "hf-internal-testing/tiny-bert-for-token-classification"
|
|
token_classifier = pipeline(task="token-classification", model=model_name, framework="tf")
|
|
outputs = token_classifier("This is a test !")
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
|
|
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_no_offset_tokenizer(self):
|
|
model_name = "hf-internal-testing/tiny-bert-for-token-classification"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
|
token_classifier = pipeline(task="token-classification", model=model_name, tokenizer=tokenizer, framework="pt")
|
|
outputs = token_classifier("This is a test !")
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": None, "end": None},
|
|
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": None, "end": None},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_small_model_pt(self):
|
|
model_name = "hf-internal-testing/tiny-bert-for-token-classification"
|
|
token_classifier = pipeline(task="token-classification", model=model_name, framework="pt")
|
|
outputs = token_classifier("This is a test !")
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
|
|
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline(
|
|
task="token-classification", model=model_name, framework="pt", ignore_labels=["O", "I-MISC"]
|
|
)
|
|
outputs = token_classifier("This is a test !")
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[],
|
|
)
|
|
|
|
token_classifier = pipeline(task="token-classification", model=model_name, framework="pt")
|
|
# Overload offset_mapping
|
|
outputs = token_classifier(
|
|
"This is a test !", offset_mapping=[(0, 0), (0, 1), (0, 2), (0, 0), (0, 0), (0, 0), (0, 0)]
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 1},
|
|
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 0, "end": 2},
|
|
],
|
|
)
|
|
|
|
# Batch size does not affect outputs (attention_mask are required)
|
|
sentences = ["This is a test !", "Another test this is with longer sentence"]
|
|
outputs = token_classifier(sentences)
|
|
outputs_batched = token_classifier(sentences, batch_size=2)
|
|
# Batching does not make a difference in predictions
|
|
self.assertEqual(nested_simplify(outputs_batched), nested_simplify(outputs))
|
|
self.assertEqual(
|
|
nested_simplify(outputs_batched),
|
|
[
|
|
[
|
|
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
|
|
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
|
|
],
|
|
[],
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_pt_ignore_subwords_slow_tokenizer_raises(self):
|
|
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
|
|
|
with self.assertRaises(ValueError):
|
|
pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.FIRST)
|
|
with self.assertRaises(ValueError):
|
|
pipeline(
|
|
task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.AVERAGE
|
|
)
|
|
with self.assertRaises(ValueError):
|
|
pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.MAX)
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_simple(self):
|
|
token_classifier = pipeline(task="ner", model="dslim/bert-base-NER", grouped_entities=True)
|
|
sentence = "Hello Sarah Jessica Parker who Jessica lives in New York"
|
|
sentence2 = "This is a simple test"
|
|
output = token_classifier(sentence)
|
|
|
|
output_ = nested_simplify(output)
|
|
|
|
self.assertEqual(
|
|
output_,
|
|
[
|
|
{
|
|
"entity_group": "PER",
|
|
"score": 0.996,
|
|
"word": "Sarah Jessica Parker",
|
|
"start": 6,
|
|
"end": 26,
|
|
},
|
|
{"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
|
|
{"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
|
|
],
|
|
)
|
|
|
|
output = token_classifier([sentence, sentence2])
|
|
output_ = nested_simplify(output)
|
|
|
|
self.assertEqual(
|
|
output_,
|
|
[
|
|
[
|
|
{"entity_group": "PER", "score": 0.996, "word": "Sarah Jessica Parker", "start": 6, "end": 26},
|
|
{"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
|
|
{"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
|
|
],
|
|
[],
|
|
],
|
|
)
|
|
|
|
|
|
@is_pipeline_test
|
|
class TokenClassificationArgumentHandlerTestCase(unittest.TestCase):
|
|
def setUp(self):
|
|
self.args_parser = TokenClassificationArgumentHandler()
|
|
|
|
def test_simple(self):
|
|
string = "This is a simple input"
|
|
|
|
inputs, offset_mapping = self.args_parser(string)
|
|
self.assertEqual(inputs, [string])
|
|
self.assertEqual(offset_mapping, None)
|
|
|
|
inputs, offset_mapping = self.args_parser([string, string])
|
|
self.assertEqual(inputs, [string, string])
|
|
self.assertEqual(offset_mapping, None)
|
|
|
|
inputs, offset_mapping = self.args_parser(string, offset_mapping=[(0, 1), (1, 2)])
|
|
self.assertEqual(inputs, [string])
|
|
self.assertEqual(offset_mapping, [[(0, 1), (1, 2)]])
|
|
|
|
inputs, offset_mapping = self.args_parser(
|
|
[string, string], offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]]
|
|
)
|
|
self.assertEqual(inputs, [string, string])
|
|
self.assertEqual(offset_mapping, [[(0, 1), (1, 2)], [(0, 2), (2, 3)]])
|
|
|
|
def test_errors(self):
|
|
string = "This is a simple input"
|
|
|
|
# 2 sentences, 1 offset_mapping, args
|
|
with self.assertRaises(TypeError):
|
|
self.args_parser(string, string, offset_mapping=[[(0, 1), (1, 2)]])
|
|
|
|
# 2 sentences, 1 offset_mapping, args
|
|
with self.assertRaises(TypeError):
|
|
self.args_parser(string, string, offset_mapping=[(0, 1), (1, 2)])
|
|
|
|
# 2 sentences, 1 offset_mapping, input_list
|
|
with self.assertRaises(ValueError):
|
|
self.args_parser([string, string], offset_mapping=[[(0, 1), (1, 2)]])
|
|
|
|
# 2 sentences, 1 offset_mapping, input_list
|
|
with self.assertRaises(ValueError):
|
|
self.args_parser([string, string], offset_mapping=[(0, 1), (1, 2)])
|
|
|
|
# 1 sentences, 2 offset_mapping
|
|
with self.assertRaises(ValueError):
|
|
self.args_parser(string, offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]])
|
|
|
|
# 0 sentences, 1 offset_mapping
|
|
with self.assertRaises(TypeError):
|
|
self.args_parser(offset_mapping=[[(0, 1), (1, 2)]])
|