mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 04:40:06 +06:00

* Fix number of minimal calls to the Hub with peft integration * Alternate design * And this way? * Revert * Nits to fix * Add util * Print when changes are made * Add list to ignore * Add more rules * Manual fixes * deal with kwargs * deal with enum defaults * avoid many digits for floats * Manual fixes * Fix regex * Fix regex * Auto fix * Style * Apply script * Add ignored list * Add check that templates are filled * Adding to CI checks * Add back semi-fix * Ignore more objects * More auto-fixes * Ignore missing objects * Remove temp semi-fix * Fixes * Update src/transformers/models/pvt/configuration_pvt.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update utils/check_docstrings.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/utils/quantization_config.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Deal with float defaults * Fix small defaults * Address review comment * Treat * Post-rebase cleanup * Address review comment * Update src/transformers/models/deprecated/mctct/configuration_mctct.py Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr> * Address review comment --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
212 lines
10 KiB
Python
212 lines
10 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Image processor class for GLPN."""
|
|
|
|
from typing import List, Optional, Union
|
|
|
|
import numpy as np
|
|
import PIL.Image
|
|
|
|
from ...image_processing_utils import BaseImageProcessor, BatchFeature
|
|
from ...image_transforms import resize, to_channel_dimension_format
|
|
from ...image_utils import (
|
|
ChannelDimension,
|
|
PILImageResampling,
|
|
get_image_size,
|
|
infer_channel_dimension_format,
|
|
is_scaled_image,
|
|
make_list_of_images,
|
|
to_numpy_array,
|
|
valid_images,
|
|
)
|
|
from ...utils import TensorType, logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class GLPNImageProcessor(BaseImageProcessor):
|
|
r"""
|
|
Constructs a GLPN image processor.
|
|
|
|
Args:
|
|
do_resize (`bool`, *optional*, defaults to `True`):
|
|
Whether to resize the image's (height, width) dimensions, rounding them down to the closest multiple of
|
|
`size_divisor`. Can be overridden by `do_resize` in `preprocess`.
|
|
size_divisor (`int`, *optional*, defaults to 32):
|
|
When `do_resize` is `True`, images are resized so their height and width are rounded down to the closest
|
|
multiple of `size_divisor`. Can be overridden by `size_divisor` in `preprocess`.
|
|
resample (`PIL.Image` resampling filter, *optional*, defaults to `Resampling.BILINEAR`):
|
|
Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
|
|
do_rescale (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Can be
|
|
overridden by `do_rescale` in `preprocess`.
|
|
"""
|
|
|
|
model_input_names = ["pixel_values"]
|
|
|
|
def __init__(
|
|
self,
|
|
do_resize: bool = True,
|
|
size_divisor: int = 32,
|
|
resample=PILImageResampling.BILINEAR,
|
|
do_rescale: bool = True,
|
|
**kwargs,
|
|
) -> None:
|
|
self.do_resize = do_resize
|
|
self.do_rescale = do_rescale
|
|
self.size_divisor = size_divisor
|
|
self.resample = resample
|
|
super().__init__(**kwargs)
|
|
|
|
def resize(
|
|
self,
|
|
image: np.ndarray,
|
|
size_divisor: int,
|
|
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
|
data_format: Optional[ChannelDimension] = None,
|
|
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
**kwargs,
|
|
) -> np.ndarray:
|
|
"""
|
|
Resize the image, rounding the (height, width) dimensions down to the closest multiple of size_divisor.
|
|
|
|
If the image is of dimension (3, 260, 170) and size_divisor is 32, the image will be resized to (3, 256, 160).
|
|
|
|
Args:
|
|
image (`np.ndarray`):
|
|
The image to resize.
|
|
size_divisor (`int`):
|
|
The image is resized so its height and width are rounded down to the closest multiple of
|
|
`size_divisor`.
|
|
resample:
|
|
`PIL.Image` resampling filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
|
|
data_format (`ChannelDimension` or `str`, *optional*):
|
|
The channel dimension format for the output image. If `None`, the channel dimension format of the input
|
|
image is used. Can be one of:
|
|
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
input_data_format (`ChannelDimension` or `str`, *optional*):
|
|
The channel dimension format of the input image. If not set, the channel dimension format is inferred
|
|
from the input image. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
|
|
Returns:
|
|
`np.ndarray`: The resized image.
|
|
"""
|
|
height, width = get_image_size(image, channel_dim=input_data_format)
|
|
# Rounds the height and width down to the closest multiple of size_divisor
|
|
new_h = height // size_divisor * size_divisor
|
|
new_w = width // size_divisor * size_divisor
|
|
image = resize(
|
|
image,
|
|
(new_h, new_w),
|
|
resample=resample,
|
|
data_format=data_format,
|
|
input_data_format=input_data_format,
|
|
**kwargs,
|
|
)
|
|
return image
|
|
|
|
def preprocess(
|
|
self,
|
|
images: Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]],
|
|
do_resize: Optional[bool] = None,
|
|
size_divisor: Optional[int] = None,
|
|
resample=None,
|
|
do_rescale: Optional[bool] = None,
|
|
return_tensors: Optional[Union[TensorType, str]] = None,
|
|
data_format: ChannelDimension = ChannelDimension.FIRST,
|
|
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
**kwargs,
|
|
) -> BatchFeature:
|
|
"""
|
|
Preprocess the given images.
|
|
|
|
Args:
|
|
images (`PIL.Image.Image` or `TensorType` or `List[np.ndarray]` or `List[TensorType]`):
|
|
Images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
|
passing in images with pixel values between 0 and 1, set `do_normalize=False`.
|
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
|
Whether to resize the input such that the (height, width) dimensions are a multiple of `size_divisor`.
|
|
size_divisor (`int`, *optional*, defaults to `self.size_divisor`):
|
|
When `do_resize` is `True`, images are resized so their height and width are rounded down to the
|
|
closest multiple of `size_divisor`.
|
|
resample (`PIL.Image` resampling filter, *optional*, defaults to `self.resample`):
|
|
`PIL.Image` resampling filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
|
|
an effect if `do_resize` is set to `True`.
|
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
|
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.).
|
|
return_tensors (`str` or `TensorType`, *optional*):
|
|
The type of tensors to return. Can be one of:
|
|
- `None`: Return a list of `np.ndarray`.
|
|
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
|
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
|
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
|
The channel dimension format for the output image. Can be one of:
|
|
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
input_data_format (`ChannelDimension` or `str`, *optional*):
|
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
|
from the input image. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
|
"""
|
|
do_resize = do_resize if do_resize is not None else self.do_resize
|
|
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
|
size_divisor = size_divisor if size_divisor is not None else self.size_divisor
|
|
resample = resample if resample is not None else self.resample
|
|
|
|
if do_resize and size_divisor is None:
|
|
raise ValueError("size_divisor is required for resizing")
|
|
|
|
images = make_list_of_images(images)
|
|
|
|
if not valid_images(images):
|
|
raise ValueError("Invalid image(s)")
|
|
|
|
# All transformations expect numpy arrays.
|
|
images = [to_numpy_array(img) for img in images]
|
|
|
|
if is_scaled_image(images[0]) and do_rescale:
|
|
logger.warning_once(
|
|
"It looks like you are trying to rescale already rescaled images. If the input"
|
|
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
|
)
|
|
|
|
if input_data_format is None:
|
|
# We assume that all images have the same channel dimension format.
|
|
input_data_format = infer_channel_dimension_format(images[0])
|
|
|
|
if do_resize:
|
|
images = [
|
|
self.resize(image, size_divisor=size_divisor, resample=resample, input_data_format=input_data_format)
|
|
for image in images
|
|
]
|
|
|
|
if do_rescale:
|
|
images = [self.rescale(image, scale=1 / 255, input_data_format=input_data_format) for image in images]
|
|
|
|
images = [
|
|
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
|
]
|
|
|
|
data = {"pixel_values": images}
|
|
return BatchFeature(data=data, tensor_type=return_tensors)
|