transformers/src/transformers/models/glpn/image_processing_glpn.py
Sylvain Gugger 03af4c42a6
Docstring check (#26052)
* Fix number of minimal calls to the Hub with peft integration

* Alternate design

* And this way?

* Revert

* Nits to fix

* Add util

* Print when changes are made

* Add list to ignore

* Add more rules

* Manual fixes

* deal with kwargs

* deal with enum defaults

* avoid many digits for floats

* Manual fixes

* Fix regex

* Fix regex

* Auto fix

* Style

* Apply script

* Add ignored list

* Add check that templates are filled

* Adding to CI checks

* Add back semi-fix

* Ignore more objects

* More auto-fixes

* Ignore missing objects

* Remove temp semi-fix

* Fixes

* Update src/transformers/models/pvt/configuration_pvt.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update utils/check_docstrings.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Deal with float defaults

* Fix small defaults

* Address review comment

* Treat

* Post-rebase cleanup

* Address review comment

* Update src/transformers/models/deprecated/mctct/configuration_mctct.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Address review comment

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-10-04 15:13:37 +02:00

212 lines
10 KiB
Python

# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for GLPN."""
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
logger = logging.get_logger(__name__)
class GLPNImageProcessor(BaseImageProcessor):
r"""
Constructs a GLPN image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions, rounding them down to the closest multiple of
`size_divisor`. Can be overridden by `do_resize` in `preprocess`.
size_divisor (`int`, *optional*, defaults to 32):
When `do_resize` is `True`, images are resized so their height and width are rounded down to the closest
multiple of `size_divisor`. Can be overridden by `size_divisor` in `preprocess`.
resample (`PIL.Image` resampling filter, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Can be
overridden by `do_rescale` in `preprocess`.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size_divisor: int = 32,
resample=PILImageResampling.BILINEAR,
do_rescale: bool = True,
**kwargs,
) -> None:
self.do_resize = do_resize
self.do_rescale = do_rescale
self.size_divisor = size_divisor
self.resample = resample
super().__init__(**kwargs)
def resize(
self,
image: np.ndarray,
size_divisor: int,
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image, rounding the (height, width) dimensions down to the closest multiple of size_divisor.
If the image is of dimension (3, 260, 170) and size_divisor is 32, the image will be resized to (3, 256, 160).
Args:
image (`np.ndarray`):
The image to resize.
size_divisor (`int`):
The image is resized so its height and width are rounded down to the closest multiple of
`size_divisor`.
resample:
`PIL.Image` resampling filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If `None`, the channel dimension format of the input
image is used. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not set, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The resized image.
"""
height, width = get_image_size(image, channel_dim=input_data_format)
# Rounds the height and width down to the closest multiple of size_divisor
new_h = height // size_divisor * size_divisor
new_w = width // size_divisor * size_divisor
image = resize(
image,
(new_h, new_w),
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
return image
def preprocess(
self,
images: Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]],
do_resize: Optional[bool] = None,
size_divisor: Optional[int] = None,
resample=None,
do_rescale: Optional[bool] = None,
return_tensors: Optional[Union[TensorType, str]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> BatchFeature:
"""
Preprocess the given images.
Args:
images (`PIL.Image.Image` or `TensorType` or `List[np.ndarray]` or `List[TensorType]`):
Images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_normalize=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the input such that the (height, width) dimensions are a multiple of `size_divisor`.
size_divisor (`int`, *optional*, defaults to `self.size_divisor`):
When `do_resize` is `True`, images are resized so their height and width are rounded down to the
closest multiple of `size_divisor`.
resample (`PIL.Image` resampling filter, *optional*, defaults to `self.resample`):
`PIL.Image` resampling filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.).
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- `None`: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
size_divisor = size_divisor if size_divisor is not None else self.size_divisor
resample = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError("size_divisor is required for resizing")
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError("Invalid image(s)")
# All transformations expect numpy arrays.
images = [to_numpy_array(img) for img in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(image, size_divisor=size_divisor, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [self.rescale(image, scale=1 / 255, input_data_format=input_data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)